CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 728

_id sigradi2003_086
id sigradi2003_086
authors Voigt, Andreas and Linzer, Helena
year 2003
title Challenges concerning further Development of "Digital Cities"
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary The present paper discusses topical challenges for a further development of digital cities: recent lines of argumentation in favor of further development of digital cities primarily result from the model theory, the recent planning theory and interdisciplinary applications (e.g. facility management). The findings of the planning theory are to act as a checklist for quality-examinations of activities already performed in the field of "Digital Cities". It has to be focused on the improvement of utilization possibilities of digital cities. The contribution is based on the variety of personal experience with the modeling of digital cities including the experience published throughout the scientific community.
keywords Digital Cities, Virtual Reality, Planning and Decision Support
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2021_203
id ecaade2021_203
authors Arora, Hardik, Bielski, Jessica, Eisenstadt, Viktor, Langenhan, Christoph, Ziegler, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Consistency Checker - An automatic constraint-based evaluator for housing spatial configurations
doi https://doi.org/10.52842/conf.ecaade.2021.2.351
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 351-358
summary The gradual rise of artificial intelligence (AI) and its increasing visibility among many research disciplines affected Computer-Aided Architectural Design (CAAD). Architectural deep learning (DL) approaches are being developed and published on a regular basis, such as retrieval (Sharma et al. 2017) or design style manipulation (Newton 2019; Silvestre et al. 2016). However, there seems to be no method to evaluate highly constrained spatial configurations for specific architectural domains (such as housing or office buildings) based on basic architectural principles and everyday practices. This paper introduces an automatic constraint-based consistency checker to evaluate the coherency of semantic spatial configurations of housing construction using a small set of design principles to evaluate our DL approaches. The consistency checker informs about the overall performance of a spatial configuration followed by whether it is open/closed and the constraints it didn't satisfy. This paper deals with the relation of spaces processed as mathematically formalized graphs contrary to existing model checking software like Solibri.
keywords model checking, building information modeling, deep learning, data quality
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2022_205
id caadria2022_205
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title Quantifying the Intangible, A Tool for Retrospective Protocol Studies of Sketching During the Early Conceptual Design of Architecture
doi https://doi.org/10.52842/conf.caadria.2022.1.403
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 403-411
summary Sketching is a craft supporting the development of ideas and design intentions, as well as an effective tool for communication during the early architectural design stages by making them tangible. Even though sketch-based interaction is a promising approach for Computer-Aided Architectural Design (CAAD) systems, it remains a challenge for computers to recognise information in a sketch. Design protocol studies conducted to deconstruct the sketch and sketching process collect solely qualitative data so far. However, the 'metis' projects aim to create an intelligent design assistant, using an artificial neural network (ANN), in the manner of Negroponte‚s Architecture Machine. By assimilating to the user's idiosyncrasies, the system suggests further design steps to the architect to improve the design decision making process for economic growth, qualitative self-education through the dialogue and reducing stress. For training such ANN quantitative data is needed. In order to produce quantifiable results from such a study, we propose our open-source web-tool ‚Sketch Protocol Analyser‚. By correlating different parameters (i.e. video, transcript and sketch built) through the same labels and their timestamps, we create quantitative data for further use.
keywords Design Protocol Studies, Sketching, Data Collection, Architectural Design Process, ANN, SDG 3, SDG 4, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2022_208
id caadria2022_208
authors Bielski, Jessica, Langenhan, Christoph, Ziegler, Christoph, Eisenstadt, Viktor, Petzold, Frank, Dengel, Andreas and Althoff, Klaus-Dieter
year 2022
title The What, Why, What-If and How-To for Designing Architecture, Explainability for Auto-Completion of Computer-Aided Architectural Design of Floor Plan Layouting During the Early Design Stages
doi https://doi.org/10.52842/conf.caadria.2022.2.435
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 435-444
summary In the next thirty years, the world's population is expected to increase to ten billion people, posing major challenges for the construction industry. To meet the growing demands for residential housing in the future, architects need to work faster, more efficiently, and more sustainably, while increasing architectural quality. The hypothetical intelligent design assistant WHITE BRIDGE, based on the methods of the 'metis' projects, suggests further design steps to support the architectural design decision-making processes of the early design phases. This facilitates faster and better decisions early in the process for a more responsible resource consumption, better mental well-being, and ultimately economic growth. Through a case study we investigate if additional information supports the understanding of these suggestions to reduce the cognitive workload of architectural design decisions on the backdrop of their respective representation. The paper contributes an approach for visualising explanations of an intelligent design assistant, their integration into paper prototypes for case studies, and a workflow for data collection and analysis. The results suggest that the cognitive horizon of the architects is broadened by the explanations, while the visualisation methods significantly influence the usefulness and use of the conveyed information within the explanations.
keywords Explainability, Artificial intelligence, XAI, SDG 3, SDG 8, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2021_086
id caadria2021_086
authors Eisenstadt, Viktor, Arora, Hardik, Ziegler, Christoph, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Exploring optimal ways to represent topological and spatial features of building designs in deep learning methods and applications for architecture
doi https://doi.org/10.52842/conf.caadria.2021.1.191
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 191-200
summary The main aim of this research is to harness deep learning techniques to support architectural design problems in early design phases, for example, to enable auto-completion of unfinished designs. For this purpose, we investigate the possibilities offered by established deep learning libraries such as TensorFlow. In this paper, we address a core challenge that arises, namely the transformation of semantic building information into a tensor format that can be processed by the libraries. Specifically, we address the representation of information about room types of a building and type of connection between the respective rooms. We develop and discuss five formats. Results of an initial evaluation based on a classification task show that all formats are suitable for training deep learning networks. However, a clear winner could be determined as well, for which a maximum value of 98% for validation accuracy could be achieved.
keywords deep learning; spatial configuration; data representation; semantic building fingerprint
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2021_254
id ecaade2021_254
authors Eisenstadt, Viktor, Arora, Hardik, Ziegler, Christoph, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2021
title Comparative Evaluation of Tensor-based Data Representations for Deep Learning Methods in Architecture
doi https://doi.org/10.52842/conf.ecaade.2021.1.045
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 45-54
summary This paper presents an extended evaluation of tensor-based representations of graph-based architectural room configurations. This experiment is a continuation of examination of recognition of semantic architectural features by contemporary standard deep learning methods. The main aim of this evaluation is to investigate how the deep learning models trained using the relation tensors as data representation means perform on data not available in the training dataset. Using a straightforward classification task, stepwise modifications of the original training dataset and manually created spatial configurations were fed into the models to measure their prediction quality. We hypothesized that the modifications that influence the class label will not decrease this quality, however, this was not confirmed and most likely the latent non-class defining features make up the class for the model. Under specific circumstances, the prediction quality still remained high for the winning relation tensor type.
keywords Deep Learning; Spatial Configuration; Semantic Building Fingerprint
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2022_222
id ecaade2022_222
authors Eisenstadt, Viktor, Bielski, Jessica, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2022
title Autocompletion of Design Data in Semantic Building Models using Link Prediction and Graph Neural Networks
doi https://doi.org/10.52842/conf.ecaade.2022.1.501
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 501–510
summary This paper presents an approach for AI-based autocompletion of graph-based spatial configurations using deep learning in the form of link prediction through graph neural networks. The main goal of the research presented is to estimate the probability of connections between the rooms of the spatial configuration graph at hand using the available semantic information. In the context of early design stages, deep learning-based prediction of spatial connections helps to make the design process more efficient and sustainable using the past experiences collected in a training dataset. Using the techniques of transfer learning, we adapted methods available in the modern graph-based deep learning frameworks in order to apply them for our autocompletion purposes to suggest possible further design steps. The results of training, testing, and evaluation showed very good results and justified application of these methods.
keywords Spatial Configuration, Autocompletion, Link Prediction, Deep Learning
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2022_166
id caadria2022_166
authors Eisenstadt, Viktor, Bielski, Jessica, Mete, Burak, Langenhan, Christoph, Althoff, Klaus-Dieter and Dengel, Andreas
year 2022
title Autocompletion of Floor Plans for the Early Design Phase in Architecture: Foundations, Existing Methods, and Research Outlook
doi https://doi.org/10.52842/conf.caadria.2022.1.323
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 323-332
summary This paper contributes the current research state and possible future developments of AI-based autocompletion of architectural floor plans and shows demand for its establishment in computer-aided architectural design to facilitate decent work, economic growth through accelerating the design process to meet the future workload. Foundations of data representations together with the autocompletion contexts are defined, existing methods described and evaluated in the integrated literature review, and criteria for qualitative and sustainable autocompletion are proposed. Subsequently, we contribute three unique deep learning-based autocompletion methods currently in development for the research project metis-II. They are described in detail from a technical point of view on the backdrop of how they adhere to the proposed criteria for creating our novel AI.
keywords Artificial Intelligence, Architectural Design, Floor Plan, Autocompletion, SDG 8, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id caadria2023_292
id caadria2023_292
authors Langenhan, Christoph, Bielski, Jessica, Ziegler, Christoph, Eisenstadt, Viktor, Althoff, Klaus-Dieter and Dengel, Andreas
year 2023
title Cross-Disciplinary Semantic Building Fingerprints ‚ AI Knowledge Graphs to Store Topological Building Information Derived From Semantic Building Models (BIM) to Apply Methods of Artificial Intelligence (AI)
doi https://doi.org/10.52842/conf.caadria.2023.1.129
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 129–138
summary The advancing digitalization in the building sector with the possibility to store and retrieve large amounts of data has the potential to digitally support planners with extensive design and construction information. Large amounts of semi-structured three-dimensional geometric data of buildings are usually available today, but the topological relationships are rarely explicitly described and thus not directly usable with computational methods of AI. To this end, we propose methods for indexing spatial configurations inspired by the similarity analysis of incomplete human fingerprints, since the early design stage of architectural design is characterized by incomplete information. For this, the topology of spatial configurations is extracted from Building Information Modelling (BIM) data and represented as graphs. In this paper, Semantic Building Fingerprints (SBFs) and Semantic Urban Fingerprints (SUFs), as well as use cases for AI methods are described.
keywords Conceptual design, building information modelling, knowledge graph, artificial intelligence
series CAADRIA
email
last changed 2023/06/15 23:14

_id ecaade2011_014
id ecaade2011_014
authors Langenhan, Christoph; Haß, Sebastian; Weber, Markus; Petzold, Frank; Liwicki, Marcus; Dengel, Andreas
year 2011
title Investigating research strategies for accessing knowledge stored in semantic models
doi https://doi.org/10.52842/conf.ecaade.2011.403
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.403-411
summary Current data storage and retrieval strategies usually use keywords and are not well suited to retrieving spatial configurations, the proportions of rooms or their interrelationships. Instead of using text-based research, a graphical inquiry and query system is proposed that can recognise formal structures on the one hand and concept sketches on the other. Using artificial intelligence methods and multimodal interaction, knowledge is stored in semantic models. From previously stored planning solutions in a BIM, semantic fingerprints are derived that describe their functional and topological characteristics. The search system likewise derives a semantic fingerprint from the spatial configuration of a concept sketch and compares it with fingerprints stored in the repository. Similar matches are then shown to the designer.
wos WOS:000335665500046
keywords Knowledge management; ontology; case-based design; industry foundation classes; multimodal
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p035
id cf2011_p035
authors Langenhan, Christoph; Weber Markus, Petzold Frank, Liwicki Marcus, Dengel Andreas
year 2011
title Sketch-based Methods for Researching Building Layouts through the Semantic Fingerprint of Architecture
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 85-102.
summary The paper focuses on the early stages of the design process where the architect needs assistance in finding reference projects and describes different aspects of a concept for retrieving previous design solutions with similar layout characteristics. Such references are typically used to see how others have solved a similar architectural problem or simply for inspiration. Current electronic search methods use textual information rather than graphical information. The configuration of space and the relations between rooms are hard to represent using keywords, in fact transforming these spatial configurations into verbally expressed typologies tends to result in unclear and often imprecise descriptions of architecture. Nowadays, modern IT-technologies lead to fundamental changes during the process of designing buildings. Digital representations of architecture require suitable approaches to the storage, indexing and management of information as well as adequate retrieval methods. Traditionally planning information is represented in the form of floor plans, elevations, sections and textual descriptions. State of the art digital representations include renderings, computer aided design (CAD) and semantic information like Building Information Modelling (BIM) including 2D and 3D file formats such as Industry Foundation Classes (IFC) (IAI, 2010). In the paper, we examine the development of IT-technologies in the area of case-based reasoning (Richter et al., 2007) to provide a sketch-based submission and retrieval system for publishing and researching building layouts including their manipulation and subsequent use. The user interface focuses on specifying space and their relations by drawing them. This query style supports the spatial thinking approach that architects use, who often have a visual representation in mind without being able to provide an accurate description of the spatial configuration. The semantic fingerprint proposed by (Langenhan, 2008) is a description and query language for creating an index of floor plans to store meta-data about architecture, which can be used as signature for retrieving reference projects. The functional spaces, such as living room or kitchen and the relation among on another, are used to create a fingerprint. Furthermore, we propose a visual sketch-based interface (Weber et al., 2010) based on the Touch&Write paradigm (Liwicki et al., 2010) for the submission and the retrieval phase. During the submission process the architect is sketching the space-boundaries, space relations and functional coherence's. Using state of the art document analysis techniques, the architects are supported offering an automatic detection of room boundaries and their physical relations. During the retrieval the application will interpret the sketches of the architect and find reference projects based on a similarity based search utilizing the semantic fingerprint. By recommending reference projects, architects will be able to reuse collective experience which match the current requirements. The way of performing a search using a sketch as a query is a new way of thinking and working. The retrieval of 3D models based on a sketched shape are already realized in several domains. We already propose a step further, using the semantics of a spatial configuration. Observing the design process of buildings reveals that the initial design phase serves as the foundation for the quality of the later outcome. The sketch-based approach to access valuable information using the semantic fingerprint enables the user to digitally capture knowledge about architecture, to recover and reuse it in common-sense. Furthermore, automatically analysed fingerprints can put forward both commonly used as well as best practice projects. It will be possible to rate architecture according to the fingerprint of a building.
keywords new media, case-based reasoning, ontology, semantic building design, sketch-based, knowledge management
series CAAD Futures
email
last changed 2012/02/11 19:21

_id sigradi2003_020
id sigradi2003_020
authors Abarca, R., Díaz, S. and Moreno, S.
year 2003
title Desarrollo de material informatico-educativo para la enseñanza de la geometría a estudiantes de diseño (Development of IT-based educational material for the teaching of geometry to students of design)
source SIGraDi 2003 - [Proceedings of the 7th Iberoamerican Congress of Digital Graphics] Rosario Argentina 5-7 november 2003
summary This paper is born as an answer to the meaningful learning difficulties and academic performance in Spatial and Flat Geometry course on second year Design School at Universidad de las Americas University, Santiago de Chile. The problem is faced from the potentiality that digital environment gives us in representation, display options, shape and projection testing, analysis and non visual accounts to teach flat and spatial geometry within the receptors' codes and coherent with designer's own language.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 50b1
authors Abbasov, A.M. and Mamedova, M.H.
year 2003
title Application of fuzzy time series to population forecasting
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary The potential of fuzzy logic application in simulating of demographic processes by the example of population forecasting task hasbeen investigated. The particularities of population as dynamical system functioning under the condition of uncertainty have beenexamined and fuzzy statement problem has been suggested. The strategy of population forecasting using the method of fuzzy timeseries model has been proposed. The simulations on retrospective evaluation of population are carried out and on the base of the results of these simulations the conclusion avocet the effectiveness of utilization of fuzzy model for demographic forecasting has been model.
series other
last changed 2003/11/21 15:15

_id cf2003_m_006
id cf2003_m_006
authors ACHTEN, Henri and JESSURUN, Joran
year 2003
title Learning From Mah Jong - Towards a Multi-Agent System that can Recognize Graphic Units
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 115-124
summary Sketching is a major means of exploiting the first conceptual developments in architectural design. If we want to support the architect in the ideas-developing phase of design, then we need to understand the conventions of depiction and encoding in drawings. The theory of graphic units provides an extended list of such conventions that are widely used. We propose that a multi-agent system for recognition of graphic units in drawings is fruitful: agents can specialize in graphic units, a multi-agent system can deal with ambiguity through negotiation and conflict resolution, and multi-agent systems function in dynamically changing environments. We first make a multi-agent system that can do something simpler: playing Mah Jong solitary. The Mah Jong solitary system shares the following important features with a multi-agent system that can recognize graphic units: (1) specialized agents for moves; (2) negotiation between agents to establish the best move; (3) dynamically changing environment; and (4) search activity in more advanced strategies. The paper presents the theoretical basis of graphic units and multi-agents systems. The multi-agent framework and its implementation is presented. Various levels of game play are distinguished, and these are correlated to the multi-agent system. The paper shows how the findings form the basis for graphic unit recognition.
keywords artificial intelligence, games, graphic units, agents
series CAAD Futures
email
last changed 2003/11/22 16:39

_id ecaade03_269_43_achten
id ecaade03_269_43_achten
authors Achten, Henri and Joosen, Gijs
year 2003
title The Digital Design Process - Reflections on a Single Design Case
doi https://doi.org/10.52842/conf.ecaade.2003.269
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 269-274
summary CAD tools are increasing their expressive and geometric power to enable a design process in which the computer model can be used throughout the whole design process for realizing the design. Such a process, in which other media such as physical scale models or drawings are no longer required by necessity to facilitate the design process, can be considered a digital design process. Rather than proposing that such a process is ideal – drawings and scale models should not be discarded – we feel that when taken as a starting point, the digital design process raises a number of new challenges to architectural design that deserve attention. These challenges concern the basic activities in design: exploration of the problem space, creating preliminary solutions, understanding consequences of design decisions, and so forth. In this paper we take the concrete design case of a graduation project that was developed from the start solely in CAD. We identify a number of key issues in that process such as continuous modeling, the model as design, continuous pliability, localized focus, and postponed decision. These issues not only have a technical, CAD-related aspect, but also are connected to architectural design. Most of these aspects are subject of contemporary debate in architectural design. On this basis, we can indicate where CAD is making a potential difference in architectural design.
keywords Digital design, CAAD
series eCAADe
email
more http://www.ds.arch.tue.nl/General/Staff/henri
last changed 2022/06/07 07:54

_id ijac20031103
id ijac20031103
authors Achten, Henri H.
year 2003
title New Design Methods for Computer Aided Architectural Design Methodology Teaching
source International Journal of Architectural Computing vol. 1 - no. 1
summary Architects and architectural students are exploring new ways of design using Computer Aided Architectural Design software. This exploration is seldom backed up from a design methodological viewpoint. In this paper, a design methodological framework for reflection on innovate design processes by architects that has been used in an educational setting is introduced.The framework leads to highly specific, weak design methods, that clarify the use of the computer in the design process.The framework allows students to grasp new developments, use them in their own design work, and to better reflect on their own position relative to CAAD and architectural design.
series journal
email
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id ecaade03_369_112_akgun
id ecaade03_369_112_akgun
authors Akgun, Yenal
year 2003
title An Interactive Database (HizmO) for Reconstructing Lost Modernist Izmir:
doi https://doi.org/10.52842/conf.ecaade.2003.369
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 369-372
summary The research project in progress in the School of Architecture at the Izmir Institute of Technology includes documentation and reconstruction (by 3D modeling in electronic media) of damaged and lost early modern buildings in the Izmir region. The research aims to analyze the differences between Izmir modern buildings and Universal Modern Style, and preserve information on architectural heritage for future generations. The project is at the phase of developing an interactive web-based historical database (HizmO) that includes data (information, images, technical drawings, VRML models) and visualization of the findings. This database aims to be a pioneer in Mediterranean Region for exhibition of relations between traditional architecture (especially Mediterranean locality) and modernism, and organization of a network and off-campus learning activity for Mediterranean architecture that serve as a guide for students, researchers and architects. This paper aims at introducing this research and discussing the application of the database “HizmO,” its aims and potential effects on education in architectural history.
keywords E-learning, educational database, architectural history, VRML
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2004_paper12
id ascaad2004_paper12
authors Al-Qawasmi, Jamal
year 2004
title Reflections on e-Design: The e-Studio Experience
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary The influence of digital media and information technology on architectural design education and practice is increasingly evident. The practice and learning of architecture is increasingly aided by and dependant on digital media. Digital technologies not only provide new production methods, but also expand our abilities to create, explore, manipulate and compose space. In contemporary design education, there is a continuous demand to deliver new skills in digital media and to rethink architectural design education in the light of the new developments in digital technology. During the academic years 2001-2003, I had the chance to lead the efforts to promote an effective use of digital media for design education at Department of Architecture, Jordan University of Science and Technology (JUST). Architectural curriculum at JUST dedicated much time for teaching computing skills. However, in this curriculum, digital media was taught in the form of "software use" education. In this context, digital media is perceived and used mainly as a presentation tool. Furthermore, Computer Aided Architectural Design and architectural design are taught in separate courses without interactions between the two.
series ASCAAD
email
last changed 2007/04/08 19:47

_id caadria2003_c2-4
id caadria2003_c2-4
authors Al-Sallal, Khaled A.
year 2003
title Integrating Energy Design Into Caad Tools: Theoretical Limits and Potentials
doi https://doi.org/10.52842/conf.caadria.2003.323
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 323-340
summary The study is part of a research aims to establish theoretical grounds essential for the development of user efficient design tools for energy-conscious architectural design, based on theories in human factors of intelligent interfaces, problem solving, and architectural design. It starts by reviewing the shortcomings of the current energy design tools, from both architectural design and human factor points of view. It discusses the issues of energy integration with design from three different points of view: architectural, problem-solving, and human factors. It evaluates theoretically the potentials and limitations of the current approaches and technologies in artificial intelligence toward achieving the notion "integrating energy design knowledge into the design process" in practice and education based on research in the area of problem solving and human factors and usability concerns. The study considers the user interface model that is based on the cognitive approach and can be implemented by the hierarchical structure and the object-oriented model, as a promising direction for future development. That is because this model regards the user as the center of the design tool. However, there are still limitations that require extensive research in both theoretical and implementation directions. At the end, the study concludes by discussing the important points for future research.
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2005_731
id sigradi2005_731
authors Albornoz Delgado, Humberto Ángel; Laura Talía Escalante Rodríguez, Leticia Gallegos Cazares
year 2005
title Didactic Design: light and optics for preschool level
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 2, pp. 731-737
summary Since 2003, we have been developing a pedagogic proposal and didactic material for teaching Light and Optics to kindergarden children that enhances the construction of the first scientific thinking schemes. The design (industrial and graphic) applied to this project has generated an educational product composed of 44 objects. These materials allow teaching concepts such as: combination of colors, light indispensable to see, formation of shadows and images are not objects. These have been developed as inciters of curiosity, capable to awake the innate restlessness of children, achieving to stimulate their creativity. The purpose is to explore knowledge and construct their own ideas; enrich their experiences and inquire a reality that was drawn grey and tedious, generating a process of manipulation-action and then representation-conceptualization. This product has been successfully used as a pilot test in a kindergarden, reflecting significant gains in students’ science learning. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_73822 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002