CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 15057

_id sigradi2012_47
id sigradi2012_47
authors Menegotto, José Luis
year 2012
title Fachada Cinética: aplicando aritmética modular para controlar padrões de movimento [Kinetic facade: applying modular arithmetic for controlling movement patterns]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 388-391
summary This article reports the experience of creating a support application for designing kinetic facades. The tool´s goal is the creation of a visual simulation system that permits full control over the movement of geometric patterns. In this case, we try to control the variation of polarized glasses used on architectural facades. The study presents a modeling technique of geometrical grids created and controlled by modular arithmetic operations. The programmed algorithm allows performing periodic geometric patterns. The research is aimed at formalizing a library of patterns and types of possible movements through ratings and an abstract symbolic representation.
keywords BIM; AutoCAD; kinetics facades; AutoLISP
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2016_383
id sigradi2016_383
authors Menegotto, José Luis
year 2016
title Explicitando a estrutura do prédio em modelos BIM [Giving an explicit definition of a building structure in BIM models]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.459-465
summary This paper presents an API implementation for a BIM program written in .NET platform. The goal of this application is to launch the structure of a building automatically. The automation creates and controls the building's structural elements types using external text files with a dual purpose of being the source of information and to be the explicit description of the project. Our target is to create a definition of semantics that integrate the application with a voice user interface (VUI). The present version of the work is focused on a conventional and compact building type.
keywords Structural automation; Revit; Speech recognition
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2023_137
id sigradi2023_137
authors Menegotto, José Luis
year 2023
title BIM Ontology. Some Aspects of Project Knowledge: the Building, IFCs and STOs.
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 433–446
summary This article reports on the methodology for creating an ontology constructor application (API). The API writes the ontology in OWL (Ontology Web Language). To implement the system, two elements were used: 1) a set of Excel spreadsheets that contain the hierarchical and logical structure of classes, object properties, data properties, and instances for testing purposes. These elements will define the ontological axiomatics within a well-defined BIM domain; and 2) a mechanism for processing the spreadsheets, programmed in Dynamo with DesignScript language. The mechanism reads the content of the spreadsheet and writes it in OWL format using the Manchester syntax. The work is introduced remembering some key concepts present in research carried out in this field of computer science during the 80s and 90s. The use of ontologies aims the integration of BIM data and Semantic Web, to operate digital construction environments within the Open Linked Data paradigm.
keywords BIM ontology, Open Linked Data, Semantic Web, DesignScript, ABNT
series SIGraDi
email
last changed 2024/03/08 14:07

_id sigradi2017_080
id sigradi2017_080
authors Meneses-Carlos, Fernando; Daniela Frogheri
year 2017
title Espacios habitables sensibles: Microorganismos como herramientas de diseño [Sensitive habitable spaces: Microorganisms as design tools.]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.550-559
summary This article aims to validate the possibility of including technology from micobiologies and synthetic biology in architecture and design. For this analysis, five projects are presented: a project of our own, developed by the research group, another with a direct application in architecture and three additional projects form the world of microbiology, which review topics such as energy generation, materials production and improving air quality thought microorganisms. This analysis, aims to legitimate, and expose the advantages and limits of a potential union between the molecular world and the design of the habitable space.
keywords Architecture, Microorganisms, Sensitive, Emergency; Monads
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2016_428
id sigradi2016_428
authors Menezes, Alexandre Monteiro de; Viana, Maria de Lourdes Silva; Pereira Junior, Mario Lucio; Palhares, Sérgio Ricardo
year 2016
title Projeto Simultâneo: A formaç?o do profissional contemporâneo e o mercado da construç?o civil [Simultaneous Design: The formation of the contemporary professional and construction market]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.188-193
summary This research investigates the adequacy of the contemporary professional formation to professional practice in the construction market. The work investigates the teaching of building and structures design in schools of architecture and civil engineering in Belo Horizonte. There is evidence that the use of contemporary information technology such as BIM (Building Information Modeling) enables integrated teaching of architecture and engineering, allowing simultaneous work. The hypothesis is that there is a mismatch between contemporary teaching and practice and methodological changes seeking simultaneous practice, respond adequately to contemporary assumptions of learning. The confirmation of this hypothesis subsidizes developments for future research.
keywords BIM (Building Information Modeling); Building Design; Architecture; Civil Engineering
series SIGRADI
email
last changed 2021/03/28 19:58

_id 6305
authors Meng, Brita
year 1990
title With a Little Help From My MAC
source MACWORLD September, 1990. pp. 181-188 : ill.
summary Computers now enable disabled people to work without leaving home, communicate without being able to speak, and read without being able to turn pages or see. For many individuals with disabilities computers are more than just an easier way to do things. They are a way to achieve independence and maintain self esteem. Some of the Macintosh features are described in connection to disability study cases
keywords disabilities, hardware, tools,
series CADline
last changed 1999/02/12 15:09

_id caadria2020_107
id caadria2020_107
authors Meng, Leo Lin, Graham, Jeremy and Haeusler, M. Hank
year 2020
title t-SNE: A Dimensionality Reduction Tool for Design Data Visualisation
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 629-638
doi https://doi.org/10.52842/conf.caadria.2020.2.629
summary One can argue that data is the 'new oil'. Yet more important than the sheer quantity of data is the question, in the context of architecture and design, how data is represented in design, as this is becoming a more relevant question to the architecture profession. We argue that data, in particular n-dimensional, is often hidden even in BIM models. Hence we propose a new way of understanding the space by (1) generate and integrate space analytics data using space syntax method as well as space usage data and (2) visualise the data using t-Distributed Stochastic Neighbour Embedding (t-SNE), an unsupervised learning and dimensionality reduction tool to help intuitively display high dimensions of data. This approach may help to discover the 'hidden layers' of the building information that may be otherwise omitted. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords Data-Driven Design; t-SNE; Machine Learning; Space Syntax
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia09_66
id acadia09_66
authors Menges, Achim
year 2009
title Performative Wood: Integral Computational Design for Timber Constructions
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 66-74
doi https://doi.org/10.52842/conf.acadia.2009.066
summary Wood differs from most building materials in that it is a naturally grown biological tissue. Thus wood displays significant differentiation in its material makeup and structure as compared to most industrially produced, isotropic materials. Upon closer examination wood can be described as an anisotropic natural fiber system with different material characteristics and related behavior in different directions relative to the main grain orientation. Because of its differentiated internal capillary structure wood is also hygroscopic. It absorbs and releases moisture in exchange with the environment and these fluctuations cause differential dimensional changes. In architectural history the inherent heterogeneity of wood and the related more complex material characteristics have been mainly understood as a major deficiency by the related crafts, timber industry, engineers and architects alike. This paper will present an alternative design approach and associated computational design tools that aim at understanding wood’s differentiated material make up as its major capacity rather than a deficiency. Along two design experiments the related research on an integral computational design approach towards unfolding wood’s intrinsic material characteristics and performative capacity will be discussed. The first experiment explores the anisotropic characteristics of wood by exploiting the differential bending behavior in relation to the local induction of forces through which a specific overall morphology can be achieved. The second experiment focuses on the hygroscopic property of wood as the base for developing a surface structure that responds to changes in relative humidity with no need for any additional electronic or mechanical control.
keywords Wood, materiality, prototype, performance, responsive design
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:58

_id acadia10_151
id acadia10_151
authors Menges, Achim
year 2010
title Material Information: Integrating Material Characteristics and Behavior in Computational Design for Performative Wood Construction
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 151-158
doi https://doi.org/10.52842/conf.acadia.2010.151
summary Architecture as a material practice is still predominantly based on design approaches that are characterized by a hierarchical relationship that prioritizes the generation of geometric information for the description of architectural systems and elements over material specific information. Thus, in the early design stage, the material’s innate characteristics and inherent capacities remain largely unconsidered. This is particularly evident in the way wood constructions are designed today. In comparison to most construction materials that are industrially produced and thus relatively homogeneous and isotropic, wood is profoundly different in that it is a naturally grown biological tissue with a highly differentiated material makeup . This paper will present research investigating how the transition from currently predominant modes of representational Computer Aided Design to algorithmic Computational Design allows for a significant change in employing wood’s complex anisotropic behaviour, resulting from its differentiated anatomical structure. In computational design, the relation between procedural formation, driving information, and ensuing form, enables the systematic integration of material information. This materially informed computational design processes will be explained through two research projects and the resultant prototype structures. The first project shows how an information feedback between material properties, system behaviour, the generative computational process, and robotic manufacturing allows for unfolding material-specific gestalt and tapping into the performative potential of wood. The second project focuses on embedding the unique material information and anatomical features of individual wooden elements in a continuous scanning, computational design and digital fabrication process, and thus introduces novel ways of integrating the biological variability and natural irregularities of wood in architectural design.
keywords Computational Design, Digital Fabrication, Material Properties, Behavioural Modelling
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2009_006
id ecaade2009_006
authors Menges, Achim
year 2009
title Integral Computational Design for Composite Spacer Fabric Structures: Integral Processes of Form Generation and Fabrication for Sandwich Structured Composites with 3D Warp-Knitted Textile Core
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 289-298
doi https://doi.org/10.52842/conf.ecaade.2009.289
wos WOS:000334282200035
summary Spacer fabrics are three dimensionally warp-knitted textiles that can be draped over complex double curved surfaces with no need for cut patterns or additional seams. This paper explains the development of an integral computational approach to the design and fabrication of sandwich composite structures with a spacer fabric core. Contrary to the common hierarchy of architectural design processes that prioritizes the definition of form over the inherent characteristics of materialization, this approach aims at an integral computational design process capable of unfolding a design from the constraints of making. The way the material capacity of spacer fabrics combined with the constraints of sandwich composite manufacturing directly informs the computational design process will be explained along the development of two prototype structures.
keywords Integral computational design, computational morphogenesis, computer aided manufacturing, digital fabrication, computational design methodology, composite structure, material system, spacer fabric, 3D warp-knitted textile, sandwich lay-up
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia11_72
id acadia11_72
authors Menges, Achim
year 2011
title Integrative Design Computation: Integrating material behaviour and robotic manufacturing processes in computational design for performative wood constructions
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 72-81
doi https://doi.org/10.52842/conf.acadia.2011.072
summary In contrast to most other building materials, wood is a naturally grown biological tissue. Today, the organic nature of wood is recognized as a major advantage. Wood is one of the very few naturally renewable, fully recyclable, extremely energy efficient and CO2-positive construction materials. On the other hand, compared to industrially produced, isotropic materials, the inherent heterogeneity and differentiated material makeup of wood’s anatomic structure is still considered problematic by architects and engineers alike. This is due to the fact that, even today, most design tools employed in architecture are still incapable of integrating and thus instrumentalizing the material properties and related complex behavior of wood. The research presented in this paper focuses on the development of a computational design approach that is based on the integration of material properties and characteristics. Understanding wood as a natural composite system of cellulose fibers embedded in a lignin and hemicelluloses matrix characterized by relatively high strain at failure, that is high load-bearing capacity with relatively low stiffness, the particular focus of this paper is the investigation of how the bending behavior of wood can become a generative design driver in such computational processes. In combination with the additional integration of the possibilities and constraints of robotic manufacturing processes, this enables the design and production of truly material-specific and highly performative wood architecture. The paper will provide a detailed explanation of such an integrative approach to design computation and the related methods and techniques. This is complemented by the description of three specific research projects, which were conducted as part of the overall research and all resulted in full scale prototype structures. The research projects demonstrate different approaches to the computational design integration of material behavior and robotic manufacturing constraints. Based on a solution space defined by the material itself, this enables novel ways of computationally deriving both material-specific gestalt and performative capacity of one of the oldest construction materials we have.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id acadia12_21
id acadia12_21
authors Menges, Achim
year 2012
title Material Generation: Materiality and Materialisation as Active Drivers in Design Computation
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 21-24
doi https://doi.org/10.52842/conf.acadia.2012.021
series ACADIA
type keynote paper
last changed 2022/06/07 07:58

_id cdrf2023_78
id cdrf2023_78
authors Mengman Liu, Chuhua Ding, Hui Wang
year 2023
title An Exploration on the Form Design of Movable Structures Based on Uniform Convex Polyhedral Expansion
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_7
summary 5 kinds of regular polyhedra and 13 kinds of semi-regular polyhedra are taken as the main research objects in this paper to explore the form design method of polyhedral expansion through the rotation of polygon. Firstly, the expandable range of uniform convex polyhedra is defined and divided into two types of expansion. Then three solutions are proposed, namely, discarding polygonal faces, constructing rigid-foldable origami mechanisms and constructing scissor-like elements, so that the prior unexpandable uniform convex polyhedron can be expanded. These methods extend the range of expandable uniform convex polyhedron, and can provide new form design ideas for frontier fields such as movable furniture (toys), movable art installations, 3D kinetic facades and space architecture.
series cdrf
email
last changed 2024/05/29 14:04

_id sigradi2010_173
id sigradi2010_173
authors Merlin, José Roberto
year 2010
title Instrumentos digitais na produção espacial: novas relações gesto, olhar, pensamento [Digital tools in space construction: new relationships between gestures, sight and thoughts]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 173-176
summary This work seeks to understand the creation of projects today given the radical changes in the relationships between the gestures, looks and thoughts of traditional architect due to the inclusion of digital technologies. Computers have been disseminated in architecture, leaving behind a phase of manually repeated drawing, and now reach all creative work by being able to insert the cultural characteristics of people through forms. This irreversible expansion has created the necessity for interdisciplinary study that generates a collective creative subject, whose work demands more respect for otherness and a sense of cooperation than individual intuition.
keywords architectural design; digital technologies; computer graphics; Creation in architecture; creativity
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2011_066
id caadria2011_066
authors Merrick, Kathryn; Ning Gu, Muhammad Niazi and Kamran Shafi
year 2011
title Motivation, cyberworlds and collective design
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 697-706
doi https://doi.org/10.52842/conf.caadria.2011.697
summary Collaborative design is characterised by small-scale, carefully structured, professional design teams. The increasing popularity of social computing and mass communication supported by cyberworlds suggests there is now also a strong possibility of design through mass participation, beyond small-scale, collaborative design scenarios. However to achieve collective intelligence in design, there is a need to motivate large groups of users to contribute constructively to design tasks. This paper studies different types of cyberworlds to classify the motivation profiles of their user bases. We compare these motivation profiles to those required for the emergence of collective intelligence and develop a list of technological requirements for cyberworlds to support collective intelligence and design.
keywords Collective intelligence; design; motivation; cyberworlds
series CAADRIA
email
last changed 2022/06/07 07:58

_id b4e1
authors Merz, R.
year 1994
title Shape deposition manufacturing
source Vienna University of Technology
summary This thesis addresses the issue of rapidly and automatically fabricating functional metal parts directly from CAD models. A newly developed process called Shape Deposition Manufacturing (SDM) is introduced. The process is based on the concept of layered manufacturing in SFF, but uses separate deposition and shaping steps to create a layer. Three dimensionally shaped layers are created using 5-axis CNC machining, to achieve the required geometric accuracy for fully functional shapes. Thermal deposition technologies (thermal spraying, welding) are used to achieve the required material properties. A novel, droplet based deposition process, microcasting, has been developed, to create well- bonded, high-strength material, while minimising the heat input into previously shaped layers. To create layers with a true three dimensional geometry, more detailed building strategies, than used by conventional SFF processes, are required by the SDM process. A CAD based planning system, which addresses these issues by decomposing a solid model of a part into layers and manufacturable, fully three dimensional segments is described. An automated testbed facility installed at Carnegie Mellon's Shape Deposition Laboratory is discussed, and shows the feasibility of automating the process. The microcasting process is explained in detail and its performance in the SDM environment is evaluated. Different strategies and material combinations for the support structure have been developed and are presented with detailed descriptions of several building strategies for parts with various complexity and material quality. Material properties of structures created by the SDM process are evaluated. Problems affecting the accuracy and material integrity of SDM created structures, which mainly involve the buildup of thermal stresses during material deposition, are identified and opened for future research. Finally, various parts, with different complexity, have been built with the SDM process, to show the feasibility and performance of the process. Building time and material usage are evaluated and compared to conventional SFF processes
series thesis:PhD
email
more http://www.arcs.ac.at/dissdb/rn024248
last changed 2003/02/12 22:37

_id ascaad2014_032
id ascaad2014_032
authors Merzougui, Abdelkrim; Abdelmalek Hasseine; Djemoui Laiadi; Sadouk Houda and Jamel Chaouki
year 2014
title A CFD Analysis of the Urban Morphology Effect on Air Pollutants Dispersion
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 395-403
summary Air pollution in urban environments can have negative consequences on people's health and comfort of city-dwellers, and on the durability of buildings. Understanding the transfer and deposition of pollutants in the urban environment is therefore essential in the design process of a building. Computational simulations can aid in understanding the pollutant/chemical dispersion in the urban cityscapes. Computational fluid dynamics (CFD) represents the study of fluid mechanics with the use of computer models and simulations. In this paper we study the impact of urban planning on pollution dispersion, the dispersion characteristics, such as the spread of the pollution dispersions, have been determined for different wind speeds and wind directions.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
doi https://doi.org/10.52842/conf.acadia.2017.392
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id ddss2008-39
id ddss2008-39
authors Meshitsuka, Yusuke and Yoshitsugu Aoki
year 2008
title Stochastic Transition of Fire-prevention Performanceof Urban Area
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The aim of this study is to analyze the tendency of building renewal in order to understand the fire prevention performance of the Tokyo metropolitan area. To this end, firstly, the Tokyo metropolitan area was divided into small areas of 250,000 square meters, and the following stochastic transition matrix of each small area was estimated, 1. Stochastic matrix of state transition between the building use types, 2. Stochastic matrix of state transition between the structures of buildings. Secondly, the converged state of each small area was estimated with a Markov chain model. Finally, small areas where fire prevention performance will change for the better/constant/worse were pointed out from their converged states. The results suggest that in small areas where percentage of housing and commerce are increasing, the fire prevention performance will become worse.
keywords Urban Earthquake Disaster Mitigation, Earthquake Fire, Stochastic Transition Matrix
series DDSS
last changed 2008/09/01 17:06

_id ijac201715204
id ijac201715204
authors Mesnil, Romain; Cyril Douthe, Olivier Baverel and Bruno Léger
year 2017
title Generalised cyclidic nets for shape modelling in architecture
source International Journal of Architectural Computing vol. 15 - no. 2, 148-168
summary The aim of this article is to introduce a bottom-up methodology for the modelling of free-form shapes in architecture that meet fabrication constraints. To this day, two frameworks are commonly used for surface modelling in architecture: non-uniform rational basis spline modelling and mesh-based approaches. The authors propose an alternative framework called generalised cyclidic nets that automatically yield optimal geometrical properties for the envelope and the structural layout, like the covering with planar quadrilaterals or hexagons. This framework uses a base circular mesh and Dupin cyclides, which are natural objects of the geometry of circles in space, also known as Mo?bius geometry. This article illustrates how complex curved shapes can be generated from generalised cyclidic nets. It addresses the extension of cyclidic nets to arbitrary topologies with the implementation of a ‘hole-filling’ strategy and also demonstrates that this framework gives a simple method to generate corrugated shells.
keywords Free-form, conceptual design, structural morphology, architectural geometry, cyclidic net, fabrication-aware design, PQ mesh, corrugated shell
series other
type normal paper
email
last changed 2019/08/02 08:31

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 752HOMELOGIN (you are user _anon_299765 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002