CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 11920

_id sigradi2018_1797
id sigradi2018_1797
authors Locatelli, Daniel; de Paula, Adalberto; Omena, Thiago Henrique; Lara, Arthur
year 2018
title High-Low as expression of the Brazilian digital fabrication
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 718-723
summary This paper is the result of an investigation about the influence of digital processes in Design and its importance in innovation within ephemeral architecture through the concept of High-Low. The ephemeral architecture has the potential to combine academic and artistic knowledge to Brazilian commercial production. Here is presented one experimental case study designed to Expo Revestir for Docol in 2017 that balances the paradigm of computational design with the academic field and viable commercial applications.
keywords High-Low; File-to-Factory; Ephemeral Architecture; Computational Design;
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2007_040
id ascaad2007_040
authors Loemker, T.M.
year 2007
title Location Based Services in Revitalization: The Use of Commonly Available Techniques for a Client-Participation Model
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 505-516
summary This research concentrates on the combination of remote sensing devices, georeferenced data, web-based optimization techniques and Location Based Services in revitalization. Its aim is to enhance the delivery of information about the development potentialities of existing buildings. The present and idle stock of buildings is extensive. Nonetheless, significant data and information about existing buildings is hardly available. The real estate owners are usually not known by prospective clients and they can be elicited only with substantial effort. But even if data about a building is available it is difficult to valuate it precisely, because of missing standard classification techniques. The question whether or not a building is suitable for a certain subsequent use is therefore hard to answer. It involves an extensive expenditure of time and manpower. Recent publications however, demonstrate that requests for the re-use of buildings can be solved through the use of combinatorial optimization techniques (Loemker 2006a, 2006b, 2007). Within these approaches researchers mainly concentrate on the architect dealing with inquiries from clients. These inquiries typically address the question if specific buildings are suitable for particular future uses. With the aid of optimization engines the architect can solve these requests through a description of the existing buildings and the corresponding enquiries in terms of specific criteria such as number and size of rooms or adjacency between rooms. According to an unambiguous syntax these approaches can be applied to any building type. The building data is stored in databases which can be inquired through optimization engines which thereupon calculate suitable solutions to the demands made by the client. But even if these approaches demonstrate high potential, their bottleneck lies in the exclusive use through the architect. Neither can they be addressed to buildings that are not listed in the architects own inventory listings nor can they be used by the clients themselves. Furthermore, no reliable statement about a prospective reuse of a building can be made directly on site by prospective clients, i.e. buyers or renters. In our research we examined if ad-hoc analyses of existing buildings can be accomplished through the clients themselves with the aid of Location Based Services that can be accessed by common remote sensing devices. The aim is to give prospective clients the possibility to visit a building and run in-situ usability simulations. To accomplish this, building data will be transferred between the building and the client through the use of ordinary communication devices. These devices automatically connect to server-based applications, which compare the requirements of the client with the existing building and run remote simulations on concrete further utilization. The newly generated information will then be passed back to the client’s device. In the paper we address a scenario of a prospective client who visits a city where he hits on an unused building he might be interest in. The client wishes to gain immediate and accurate information if the building is able to meet his demands regarding the space needed for his company. Different techniques investigated, their assets and drawbacks will be described that could accomplish suchlike tasks.
series ASCAAD
last changed 2008/01/21 22:00

_id caadria2008_77_session7b_635
id caadria2008_77_session7b_635
authors Loemker, Thorsten M.
year 2008
title In-situ Analyses of Buildings by means of Smart Devices and Location Based Services
doi https://doi.org/10.52842/conf.caadria.2008.635
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 635-641
summary In this research we examined if it might be possible that a client accomplishes an ad-hoc analysis of an existing building with the intention of prospective revitalization. The aim is to give a client who incidentally faces a building the possibility to run an in situ usability simulation. To accomplish this we recommend Location Based Services that can be accessed by common remote sensing devices. These devices should automatically connect to server-based applications, which compare the requirements of the client with the existing building and run remote simulations on concrete further utilization. The newly generated information will then be passed back to the clients’ device. In the paper we address a scenario of a prospective client who visits a city where he hits on an unused building he might be interest in. The client wishes to gain immediate and accurate information if the building is able to meet his demands regarding the space needed for his company. Different techniques investigated, their assets and drawbacks will be described that could accomplish suchlike tasks.
keywords Location Based Services, Smart Environments, Ubiquitous Computing, Optimization
series CAADRIA
email
last changed 2022/06/07 07:59

_id 4643
id 4643
authors Loemker, Thorsten Michael
year 2007
title Preservation of existing buildings through methods of Operations Research
source DACH 2007, International Conference on Digital Applications in Cultural Heritage, P. 157-175
summary The revitalization of existing buildings is getting more and more important. We are facing a situation where in many cases there is no need to design new buildings because an increasing number of existing buildings is not used anymore. The most ecological procedure to revitalize these buildings would be through a continuous usage and by making few or no alterations to the stock. Thus, the modus operandi could be named a “non-destructive” approach. From the architects’ point of view, non-destructive redesign of existing buildings is time-consuming and complex. The methodology we developed to aid architects in solving such tasks is based on exchanging or swapping utilization of specific rooms to converge in a design solution. In this regard, it was examined whether solutions for reuse tasks can be produced automatically by the use of optimization processes in floor plan design. These solutions shall be produced by swapping of existing areas. The objective is to obtain feasible planning solutions by means of these computer-based processes, which will serve the architect as a basis for the further editing of the plans. The methodical basis for this procedure is formed by models from Operations Research. The design of the model developed relates to problems in logistics, for example, the loading in trans-shipment centers. It also has analogies to board games like Chess or Go. These games are based on a specific number of fields or crosses of grid lines which are occupied by various tokens. Occupation is subject to a variety of conditions or rules. Compliance to conditions and objectives is clearly defined by the use of these rules. The analogy to our model is the fixed grid, the limited possibility to occupy fields and the fulfillment of an overall goal, i.e., to win the game. Therefore the model does not alter geometric proportions or locations of rooms but changes their occupancy such that a new usage could be applied to the building.
keywords Operations Research, Revitalization, Optimization
series other
type normal paper
email
last changed 2008/10/13 13:49

_id b678
id b678
authors Loemker, Thorsten Michael
year 2008
title Designing with machines
source Proceedings of the Dresden International Symposium of Architecture 2005, Technische Universitaet Dresden, P. 225-229
summary In 1845 Edgar Allan Poe wrote the poem “The Raven”. An act full of poetry, love, passion, mourning, melancholia and death. In his essay “The Theory of Composition” which was published in 1846 Poe proved that the poem is based on an accurate mathematical description. Not only in literature are structures present that are based on mathematics. In the work of famous musicians, artists or architects like Bach, Escher or Palladio it is evident that the beauty and clarity of their work as well as its traceability has often been reached through the use of intrinsic mathematic coherences. If suchlike structures could be described within architecture, their mathematical abstraction could supplement “The Theory of Composition” of a building. This research focuses on a basic approach to describe principles in architectural layout planning in the form of mathematical rules that will be executed by the use of a computer. Provided that “design” is in principle a combinatorial problem, i.e. a constraint-based search for an overall optimal solution of a design problem, an exemplary method will be described to solve those problems. Mathematical and syntactical difficulties that arise from the attempt to extract rules that relate to the process of building design will be pointed out. As a consequence for teachings it will be demonstrated which competences are needed in order to aid designing with machines.
series other
type normal paper
email
last changed 2008/10/13 14:20

_id c361
authors Logan, Brian S.
year 1986
title Representing the Structure of Design Problems
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 158-170
summary In recent years several experimental CAD systems have emerged which, focus specifically on the structure of design problems rather than on solution generation or appraisal (Sussman and Steele, 1980; McCallum, 1982). However, the development of these systems has been hampered by the lack of an adequate theoretical basis. There is little or no argument as to what the statements comprising these models actually mean, or on the types of operations that should be provided. This chapter describes an attempt to develop a semantically adequate basis for a model of the structure of design problems and presents a representation of this model in formal logic.
series CAAD Futures
last changed 1999/04/03 17:58

_id 050112_logara-i
id 050112_logara-i
authors Logara, Irena
year 2004
title Finding of Form
source ETH postgraduate studies final thesis, Zurich
summary The intention of the thesis is to explore the spatial effect created when multiple forces interact in the formation of space. Instead of modeling the form, an internal generative logic is articulated which then produces a range of possibilities for the “fi nding of form”. As a first step creative relationships are being built between the objects in the space and different behaviors are assigned to them. This way, objects interact with each other rather than just occupying space. New fields of infl uence are added or new relations made, creating new variations. These interdependencies then become the structuring, organizing principle for the generation and transformation of form. The surface boundary of the whole deforms as fi elds of infl uence vary in their location and intensity. The insertion of the dimension of time gives the opportunity to follow and observe the deformation process and establishes a relation of continuity between the objects and the space.
series thesis:MSc
last changed 2005/09/09 12:58

_id 6eda
authors Logie, Robert H.
year 2001
title Working Memory: A Mental Space for Design and Discovery
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary The design process can be viewed as the product of human creativethinking; the skills of generating new knowledge from old within theexternal constraints of the items to be designed. Expert designers have highlevel skills that assist them in this process. However design effectivenessand the training of design skills could benefit from an understanding of howhuman cognition undertakes the process of creative thinking without suchspecialist training, and what aspects of human cognition impede or enhancethis process. In this paper, I shall discuss some of the empirical researchand theoretical developments that have contributed to an understanding ofon-line visual and spatial cognition that might support creative thinking.The paper starts with a discussion of a particular theoretical frameworkreferred to as working memory, and some of the empirical work that hasused this framework to explore visual and spatial cognitive functions. Thisdiscussion will set the background of the general thesis for the chapter thatvisual and spatial aspects of working memory might play important roles increative thinking and design. This will lead to a discussion of the ways inwhich human working memory and the use of external aids to thinkingmight facilitate or constrain aspects of the creative process. The paper willend with a discussion of why human beings might have developed a workingmemory system, with the possibility that its primary purpose is to supportthe process of generating new knowledge.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:12

_id caadria2017_003
id caadria2017_003
authors Loh, Paul and Leggett, David
year 2017
title Tools as Agents in Design and Making Processes
doi https://doi.org/10.52842/conf.caadria.2017.799
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 799-808
summary The inversion of knowledge structure in electronics prototyping platform has allowed designers and architects to design and build reasonably stable mechatronic systems to aid novel material production; these new and hacked computer numeric controlled (CNC) machines are used to explore emerging material constructs and facilitate generative design processes. This paper examines tool making and questions the agentive capacity of such tools in design processes through a case study of a bespoke CNC machine which uses vacuum thermoforming techniques. Through understanding the agentive capacity of CNC tools, the authors suggest that the knowledge structure of tool making is distinctly different from fabrication workflow. This paper proposes an alternative means of understanding the capacity of CNC tools in the design and making process.
keywords Digital Fabrication; Tool Making; Electronics Prototyping; Digital Workflow
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_407
id caadria2019_407
authors Loh, Paul, Leggett, David and Prohasky, Daniel
year 2019
title Robotic Fabrication of Doubly Curved Façade System - Constructing intelligence in the digital fabrication workflow
doi https://doi.org/10.52842/conf.caadria.2019.2.521
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 521-530
summary This paper presents a novel advance digital fabrication method to produce doubly curved concrete panel with no immediate waste as a facade system. Using a bespoke CNC adjustable mould frame system coupled with robotic trimming techniques, the research examines the streamlining of data within a cohesive fabrication workflow. The paper concludes by reviewing an integrated workflow that points towards a multifaceted system of design, engineering and advanced manufacturing that propel research to design application.
keywords Digital Fabrication; Design workflow; Robotic
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2023_157
id caadria2023_157
authors Loh, Paul, Underwood, Jenny and Leggett, David
year 2023
title 3D Knitted Fabric Formwork for Concrete Casting
doi https://doi.org/10.52842/conf.caadria.2023.2.119
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 119–128
summary The paper presents a novel process of fabricating concrete columns using 3-dimensional (3D) knitted fabric in conjunction with an industrial robotic arm acting as scaffolding. The research explores the feasibility of using wool as a biomaterial for fabricating formwork, thereby reducing construction waste and weight compared to traditional steel, fibreglass, or timber techniques. By examining the knit architecture in conjunction with experiments in slump admixture and tensile testing of the fabric formwork, the research developed several full-scale prototypes. The outcomes were scanned and analysed to understand the geometric deviation as a result of repeat usage of the fabric as formwork. The research demonstrates the resilience of the knitted wool fabric as formwork for concrete casting.
keywords Fabric Formwork, 3D-Knit, Robotics, Concrete Casting
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2015_102
id caadria2015_102
authors Loh, Paul
year 2015
title Articulated Timber Ground, Making Pavilion as Pedagogy
doi https://doi.org/10.52842/conf.caadria.2015.023
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 23-32
summary Designing and making a pavilion within a studio setting has been undertaken by various educators and researchers as a valuable pedagogy in the past 10 years. It aims to construct a collaborative environment that allows students to develop an integrated approach to learning; through association, teamwork and creative collaboration. Usually the tacit knowledge applied and acquired through making, and the knowledge of design strategy and analysis are separated in the way they are taught; it is often difficult to integrate these within the same coursework which often leads to students using digital software and fabrication tools as problem solving devices. This paper looks at an integrated approach to learning computational design and digital fabrication through the making of a pavilion by a Master level design studio. The paper discusses the pedagogy of making through creative collaboration and integrated workflow. It focuses on the use of digital and physical prototypes as devices to stimulate an oscillating dialogue between problem solving and puzzle making; a counterpoint for students to develop and search for new knowledge in order to create personalised learning experience. The paper concludes with an examination on the limits of digital prototype when interfaced with physical environment.
keywords Digital Fabrication; Collaborative Design; Design Workflow; Pedagogy, File to Production
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_755
id caadria2016_755
authors Loh, Paul; David Leggett and Timothy Cameron
year 2016
title Smart assembly in digital fabrication: designing workflow
doi https://doi.org/10.52842/conf.caadria.2016.755
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 755-764
summary Digital fabrication project in academia has produced many grounds for experimentation. In recent years, techniques have also been tested extensively in practice within commercial project setting. This gives rise to an emerging breed of architectural practices whose work is increasingly centred on resolution of complex geometry to re- alizable projects. The resolution of parametrically driven design to production projects requires a different workflow, as often the com- pressed timeframe and budget requires the parametric model to cope with multiple streams of construction output as well as utilize the model in concurrent design processes. This paper examines a com- mercial project as case study to explore the abstraction, reduction and dissemination of information within a digital fabrication workflow. In this project, digital fabrication is deployed to reduce risk; mainly in manufacturing and its lead time. The research reveals how metadesign process at an early stage of the project can contribute to increase effi- ciency of the parametric model as well as delivering multiple streams of information for all the collaborators: architects, fabricators and builders. The team designed the assembly procedure into the paramet- ric workflow to facilitate off-site and on-site assembly. This is possi- ble through imbedding ‘smart’ detailing and structuring information with the workflow. The paper concludes by reflecting on the work- flow and asks if a metadesign driven fabrication workflow can create a more holistic approach to digital fabrication. The outcome of the case study is just one instance of the parametric machine that is devel- oped from an understanding of assembly process. This paper responds to the theme of continuous designing, through looking at digital fabri- cation as co-emergence of design procedure and practice.
keywords Digital fabrication; construction; design workflow
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2016_651
id caadria2016_651
authors Loh, Paul; Jane. Burry and Malte Wagenfeld
year 2016
title Workmanship of Risk: continuous designing in digital fabrication
doi https://doi.org/10.52842/conf.caadria.2016.651
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 651-660
summary Research projects exploring the realm of digital fabrication have shifted in recent years from developing novel techniques and outcomes to the development of tools that are part of the design pro- cess. The alignment of material systems with digital fabrication tech- nology and tooling processes have led to new terminology such as ‘digital craft’ and ‘digital making’; both terms imply a relationship be- tween craft and digital design and fabrication. Also implied is an inti- mate relationship between material production, digital tools and CNC fabrication techniques; critical ingredients in contemporary design processes. David Pye’s concept of ‘the workmanship of risk’ is used extensively in current discourse as a means to qualify digital fabrica- tion as craft production. This reading of digital fabrication as craft is limited because the word craft is used as an analogy to draw parallels between craft production and digital fabrication. There is a gap in the knowledge of what contemporary craft practice can bring to digital fabrication as a discourse or more precisely, the mechanism that al- lows digital fabrication projects to be read as a form of craft practice. This paper suggests that craft practice is rooted in the relationship be- tween material, tools and technique as an intricate workflow within a project; quantifying risk is just a means to assess this relationship. The workflow however can be considered as autopoietic in nature; it is both self-referential and self-making at the same time as continuously designing.
keywords Digital craft; digital fabrication; systems theory
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2018_213
id ecaade2018_213
authors Lohse, Theresa, Fujii, Ryuta and Werner, Liss C.
year 2018
title Multi-Dimensional Interface Based Spatial Adaption - A Prototype For A Multi-Sensory User Interface Employing Elastic Materials
doi https://doi.org/10.52842/conf.ecaade.2018.2.169
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 169-176
summary Patten and Ishii (2000) discovered that people are employing more versatile strategies for spatial distribution when using a tangible user interface (TUI) as opposed to a graphics user interface (GUI) (Patten & Ishii, 2000). Besides, the generated information outputs of conventional two-dimensional interacting screens are currently almost entirely addressing the visual and acoustic senses but lacking in other sensory stimuli - such as haptic, body equilibrium and sense of gravity. With the experiment described here, the multi-dimensionality of both the input on the interface and the output of the human interaction will be challenged. This paper aims to introduce a method to a real world versatile three-dimensional interface actuating a simulated spatial environment that substantiates the more unconventional sensory perception mentioned above. A physical prototype using an Arduino will be assembled to test the feasibility of the structure.
keywords spatial formation; virtual reality; tangible user interface; body equilibrium; physical computing
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2022_361
id caadria2022_361
authors Lok, Leslie and Bae, Jiyoon
year 2022
title Timber De-Standardized 2.0 : Mixed Reality Visualizations and User Interface for Processing Irregular Timber
doi https://doi.org/10.52842/conf.caadria.2022.2.121
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 121-130
summary Timber De-Standardized 2.0†is a mixed reality (MR) user interface (UI) that utilizes timber waste produced by manufacturing dimensional lumber, suggesting an expanded notion for "material usability‚ in timber construction. The expanded notion of designing with discarded logs not only requires new tools and technologies for cataloguing, structuring, and fabricating. It also relies on new methods and platforms for the visualization and design of these structures. As a†MR†UI,†Timber De-Standardized†enables professionals and non-professionals alike to seamlessly design with irregular logs and to create viable structural systems using an intuitive†MR†environment. In order to develop a†MR†environment with this level of competency, the research aims to finesse the visualization techniques in the immersive full-scale†3D†environment and to minimize the use of alternative 2D UI(s). The research methodology†focuses on†(1) cataloguing and extracting basic properties of various tree logs, (2)†refining mesh visualization for better user interaction, and†(3)†developing†the†MR†UI to increase user design agency with custom menu lists and operations.†This methodology will extend the usability of†MR†UI protocols to a broader audience while democratizing design and enabling the user as co-creator.
keywords Irregular Tree Logs, Wood Construction, Augmented and Mixed Realities, Mixed Reality User Interface, Co-Creative Design, Digital representation and visualization, SDG 9, SDG 12, SDG 13
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_432
id acadia22_432
authors Lok, Leslie; Bae, Jiyoon
year 2022
title HoloWall
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 432-443.
summary HoloWall is a wall assembly that integrates mixed reality (MR) protocols with nonuniformly sized lumber to develop a customized hollow-core cross-laminated timber (HCCLT). The performance-driven design workflow leverages the MR technology and tiling automation of nonuniform wood boards to guide material processing and fabrication of a customized HCCLT prototype. This paper proposes to expand the usage and the viability of customized HCCLT as a structural component. Upcycling locally salvaged wood elements, the prototype develops a material language of lamination that peels away in calibrated gradients to generate structural and visual porosity. By engaging with the computational environment and the physical making process through the MR workflow, users are able to explore an accessible design streamline.
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id acadia21_222
id acadia21_222
authors Lok, Leslie; Samaniego, Asbiel; Spencer, Lawson
year 2021
title Timber De-Standardized
doi https://doi.org/10.52842/conf.acadia.2021.222
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 222-231.
summary Timber De-Standardized is a framework that salvages irregular and regular shaped tree logs by utilizing a mixed reality (MR) interface for the design, fabrication, and assembly of a structurally viable tree log assembly. The process engages users through a direct, hands-on design approach to iteratively modify and design irregular geometry at full scale within an immersive MR environment without altering the original material.

A digital archive of 3D scanned logs are the building elements from which users, designing in the MR environment, can digitally harvest (though slicing) and place the elements into a digitally constructed whole. The constructed whole is structurally analyzed and optimized through recursive feedback loops to preserve the user’s predetermined design. This iterative toggling between the physical and virtual emancipates the use of irregular tree log structures while informing and prioritizing the user’s design intent. To test this approach, a scaled prototype was developed and fabricated in MR.

By creating a framework that links a holographic digital design to a physical catalog of material, the interactive workflow provides greater design agency to users as co-creators in processing material parts. This participation enables users to have a direct impact on the design of discretized tree logs that would otherwise have been discarded in standardized manufacturing. This paper presents an approach in which complex tree log structures can be made without the use of robotic fabrication tools. This workflow opens new opportunities for design in which users can freely configure structures with non-standardized elements within an intuitive MR environment.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id acadia22pr_154
id acadia22pr_154
authors Lok, Leslie; Zivkovic, Sasa
year 2022
title UNLOG: A Deployable and Lightweight Timber Frame
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 154-159.
summary Easily deployed and assembled, UNLOG unfolds several logs into an undulating and lightweight timber A-frame structure through robotic kerfing and bending-active kinematics. The installation provokes new methods of framing for timber construction.
series ACADIA
type project
email
last changed 2024/02/06 14:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 595HOMELOGIN (you are user _anon_949806 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002