CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3951

_id acadia06_317
id acadia06_317
authors Lee, E. S., Hong, S., Johnson, Brian R.
year 2006
title Context Aware Paper-Based Review Instrument A Tangible User Interface for Architecture Design Review
doi https://doi.org/10.52842/conf.acadia.2006.317
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 317-327
summary We describe the design and implementation of a prototype computer-supported collaborative work (CSCW) environment for review of architectural construction documents. This environment utilizes a novel plain-paper tangible interface that supports shared activity such as review of construction documents using an “over the shoulder” computational assistant called CAPRI.Despite the increasing use of computers, work in most architecture firms still largely revolves around paper drawings. Architects structure their work around paper instead of digital representations for reasons of legal liability and tradition, as well as technical limitations. While hardcopy is intuitive, dense, and easy to access, it lacks direct connection to the wide range of design knowledge increasingly available in interactive design environments. This lack is felt most acutely during design review processes, when the designer or reviewer is often called upon to consult and consider holistically a variety of supporting (backing) documents, a task which requires focused attention and a good memory, if errors are to be avoided.Our prototype system enables multiple reviewers to interact equally with a paper construction document using a tangible interface to query detail and backing data from a project knowledge base. We believe this will decrease the reviewer’s cognitive load by bringing design data to them in a contextual and timely way. In doing so, we believe errors will be caught sooner and mistakes reduced.
series ACADIA
email
last changed 2022/06/07 07:51

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id 2bcc
authors Mark, Earl
year 1989
title A Contrast in Pedagogy: The M.l.T. Versus Harvard Approach to Computer Aided Design
doi https://doi.org/10.52842/conf.ecaade.1989.x.d8b
source CAAD: Education - Research and Practice [eCAADe Conference Proceedings / ISBN 87-982875-2-4] Aarhus (Denmark) 21-23 September 1989, pp. 5.1.1-5.1.9
summary This is a period of relative detente among academics in the field of computers and architecture, advocating the use of computers in a design studio is today received more politely than, as in the past, when it was received like a declaration of war. Among some research groups at M.I.T. and Harvard to first engage In this field, the approaches were so dissimilar to one another that they could be considered as constituting separate schools of thought. Over time, however, a number of paths have led to a similar direction, if not agreement among principal investigators. The lack of sharply competing ideologies today may be a little less exciting: however, the enormous growth of the academic discipline seems now to allow for a fruitful exchange of ideas between positions that no longer seem mutually exclusive.

Two views are important, among others, at M.I.T. and Harvard. The classic M.I.T. view looks upon the AI Lab as a microcosm for examining how architects think. Underlying this view is the position of 'lets examine the way architects think about design and build tools which can reflect that process'. Another point of view, as expressed at Harvard, is speculative on what architects seem to do in design practice and education, rather than speculative on the nature of thinking per se. Both views seem ultimately to be concerned with representing architectural design knowledge within computers. And in the rob of computers as a design medium. This paper examines how the M.I.T. view and the Harvard view have superficially been associated with separate research directions. As these contrasting points of view incorporate many common themes. The author finds that it may be possible to take an eclectic position in teaching computer aided design.

keywords Constraints, Shape Grammars, Representational World, Emergent Form. Design Thinking, Design Habit
series eCAADe
email
more http://palladio.arch.Virginia.EDU/~arch-con/exhibit/
last changed 2022/06/07 07:50

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ascaad2006_paper8
id ascaad2006_paper8
authors Abdullah, Sajid; Ramesh Marasini and Munir Ahmad
year 2006
title An Analysis of the Applications of Rapid Prototyping in Architecture
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Rapid prototyping (RP) techniques are widely used within the design/manufacturing industry and are well established in manufacturing industry. These digital techniques offer quick and accurate prototypes with relatively low cost when we require exact likeness to a particular scale and detail. 3D modeling of buildings on CAD-systems in the AEC sector is now becoming more popular and becoming widely used practice as the higher efficiency of working with computers is being recognized. However the building of scaled physical representations is still performed manually, which generally requires a high amount of time. Complex post-modernist building forms are more faithfully and easily represented in a solid visualization form, than they could be using traditional model making methods. Using RP within the engineering community has given the users the possibility to communicate and visualize designs with greater ease with the clients and capture any error within the CAD design at an early stage of the project or product lifecycle. In this paper, the application of RP in architecture is reviewed and the possibilities of modeling architectural models are explored. A methodology of developing rapid prototypes with 3D CAD models using methods of solid freeform manufacturing in particular Fused Deposition Modeling (FDM) is presented and compared against traditional model making methods. An economical analysis is presented and discussed using a case study and the potential of applying RP techniques to architectural models is discussed.
series ASCAAD
email
last changed 2007/04/08 19:47

_id 2006_106
id 2006_106
authors Achten, Henri
year 2006
title Feature clusters for online recognition of graphic units in drawings
doi https://doi.org/10.52842/conf.ecaade.2006.106
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 106-112
summary Automated recognition of sketch drawings can provide the means for a natural interface between the designer and a design support system. Sketch drawing recognition is knowledge-intensive in the sense that the system must know what to look for in a drawing. In earlier work, we identified 24 different types of representations, termed graphic units. For recognition of graphic units we combine a multi-agent approach and online recognition. Each agent is specialised for one graphic unit. It continuously parses the online input stream for stroke features that fall within its scope. When an agent-specific threshold is reached, the agent puts a claim. Each agent has a specific cluster of features that can be viewed as distributed over a decision tree. The activation pattern of feature clusters over the decision tree is an indication which graphic unit is likely to be identified by the system. In this paper, we present the exhaustive set of features for agents and a binary decision tree over which the features are distributed.
keywords Image recognition; sketches; graphic units; feature-based modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_013
id ascaad2016_013
authors Belkis Öksüz, Elif
year 2016
title Parametricism for Urban Aesthetics - A flawless order behind chaos or an over-design of complexity
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 105-112
summary Over the last decade, paradigm shifts in the philosophy of space-time relations, the change from space-time to spatio-temporality, caused significant changes in the design field, and introduced new variations and discourses for parametric approaches in architecture. Among all the discourses, parametricism is likely the most spectacular one. The founder of parametricism, Patrik Schumacher (2009) describes it as “a new style,” which has “the superior capacity to articulate programmatic complexity;” and “aesthetically, it is the elegance of ordered complexity in the sense of seamless fluidity.” In its theoretical background, Schumacher (2011) affiliates this style with the philosophy of autopoiesis, the philosophy that stands between making and becoming. Additionally, parametricism concerns not only the physical geometry in making of form; but also discusses the relational and causal aspects in becoming of form. In other words, it brings the aesthetic qualities in making through the topological intelligence behind becoming. Regarding that, parametricism seems an effective way of managing /creating complex topologies in form-related issues. However, when it comes to practice, there are some challenging points of parametricism in large-scale design studies. Thus, this work underlines that the dominance of elegance for urban planning has the potential of limiting the flexible and dynamic topology of the urban context, and objectifying the whole complex urban form as an over-designed product. For an aesthetic inquiry into urban parametricism, this paper highlights the challenging issues behind the aesthetic premises of parametricism at the urban design scale. For that, Kartal Master Plan Design Proposal by Zaha Hadid Architects (2006) will be discussed as an exemplary work.
series ASCAAD
email
last changed 2017/05/25 13:31

_id sigradi2006_e068d
id sigradi2006_e068d
authors Catovic-Hughes, Selma
year 2006
title Digital Storytelling: "Memory….. Sarajevo, my personal story"
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 337-340
summary “It was a fresh summer night, sky deprived of stars, and hardly any signs of life. After hours of waiting, well passed midnight, they finally allowed us to enter. I couldn’t see or hear much, except movements of those in front of me, but judging by intense scent of mildew and worm-like smell of earth, I realized my mile long underground adventure had begun. There was no looking back, only the brave steps ahead into my new, and hopefully, safe and fruitful future.” [ from diary95 ] Just like many teens around the world, I too kept a journal. It began with playful thoughts of a teenage girl, living in Sarajevo, enjoying life. On my fifteenth birthday, those carefree moments were soon replaced with brutal facts of life under siege: Sarajevo and its citizens had been surrounded by the Serbs who took over all the roads leading in and out of the city. Three years later, I was weeks away from graduating high school, and instead of getting excited, I wondered about my future…”Yesterday was awesome -- we had both electricity and water for eight straight hours…hooray!! You could see the lights miles away…the entire city was awake, making pies and bread, washing clothes, watching movies.” [ from diary93 ] Was I going to spend the rest of my life anticipating the restricted electric and water timetable? Would I wake up the next day to see all my family alive? Would I ever have a chance to fulfill my dreams? This project captures the process of [re]tracing steps of my personal journey of leaving Sarajevo to come to the United States and [re]constructing memories as a sequence of spatial events using the artifacts and the text from my war journals. The intent of my project is to define that line between the old and the new, and intertwine and merge its current condition with the facts and memories from the past. Although there was never a permanent “Berlin-wall-like” divider, the natural contours of the river and invisible screens of the snipers served as impermeable walls and divided the city for four years. The implied boundary seemed to be more powerful than the massiveness of the concrete barricades. Is it possible to re-condition something [building, space, soul] to be and feel the same when it had been destroyed and deeply scarred on the inside? Instead of placing banal memorials engraved with the bare facts, how can we make a tribute to a series of events—a time period that changed the fabric of the city—in a more three-dimensional experience? How can we integrate digital phenomenon in the process of the post-war reconstruction to re-trace the past while creating necessary advanced improvements for the new contemporary society? The impact that social conditions have on architecture, art, culture, and ultimately, people can be told in a universal language – digital storytelling, containing pieces of history and personal memories to create representations of time and space of the past, present or future.
keywords memory; postwar; retrace; reconstruction; memorial
series SIGRADI
email
last changed 2016/03/10 09:48

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id sigradi2006_e145a
id sigradi2006_e145a
authors Heiss, Leah
year 2006
title Empathy over distance: Wearables as tools for augmenting Remote Emotional Connection
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 66-69
summary Mainstream communication modes emphasise network speed, connection access, resolution, portability, and aesthetic design as primary to the success of their products. Within this vision a three by four centimetre screen and high resolution display are deemed adequate to emulate the intensities and complexities of face-to-face connection with loved ones. They allow us to ‘be there with you’ from wherever we might be. Yet interpersonal communication is a massively complex phenomenon. It involves a plethora of micro-activities which occur at a physical, physiological, and psychological level allowing us to recognise at a cellular scale intention, motive and emotional authenticity. Our conscious and non-conscious involvement in spatially collocated communication is substantial due to these myriad channels of real-time bi-directional information transfer. While contemporary communications technologies have the capacity to mediate our relationships, they fall short of encouraging the richness of spatially co-present interaction. The research discussed in this paper investigates the potential expansion of remote connection when electronically enhanced apparel is incorporated into the communications mix. Rather than pursuing the manifold functionalities of traditional communications media the garments discussed focus solely on the goal of enhancing empathy between physically distant individuals. This paper reports on the development and testing of a range of garments that conduct presence information between remotely located people. The garments sense, process, transmit and receive the heartbeat wavelength (ECG). They are enabled with ECG sensors, signal processing equipment, small vibration motors, and radio transceivers which allow users to ‘feel’ the heartbeat of a remote friend/lover/relative as vibration through their garment. The prototypes aim to enrich the remote communications experience through reintroducing an embodied, tactile dimension that is present in face-to-face communication. A range of user testing trials will be discussed which have been undertaken to assess the impact of the garments at a conscious and a non-conscious level. Conscious experiences were gauged through qualitative testing, by way of interviews and unsolicited written reactions, which have provided a range of engaging emotional responses. Non-conscious physiological reactions were assessed by recording ECG throughout user-testing periods. This data has been processed using HRV (heart rate variability) analysis software, running on MatLab. Preliminary results suggest that users have strong conscious and non-conscious reactions to the experience of wearing the prototype garments. The paper will describe the data processing techniques and findings of the user testing trials. The development of biosignal sensing garments has raised a range of issues including: innovative potentials for embedded peripheral awareness media; the expansion of the classical body to incorporate remotely sensed information; the issue of data semantics and the development of intensely personal non-verbal languages; and the issue of corporeal privacy when one’s biological information is exposed for potential download. They also bring into question how our bodily experiences might change when we incorporate remote sensory systems.
keywords Enabled apparel; emotional tools; biosignals
series SIGRADI
email
last changed 2016/03/10 09:53

_id acadia06_461
id acadia06_461
authors Martens, Bob
year 2006
title Exploring the Design and Fabrication of Inflatables: “The Taming of the Shrew”
doi https://doi.org/10.52842/conf.acadia.2006.461
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 461-470
summary The building materials that help designers or architects achieve their goal of defining and enclosing space are usually concrete, steel, glass or wood. For these materials designers have both empirical data gained from experience and at times complex calculation methods enabling them to use them in their designs in a tangible, reckonable and, consequently, almost risk-free manner. It seems obvious that creating a design with well-known building materials will lead to more or less predictable outcomes. This is a good reason for investigating a design process dealing with air-filled building-elements. Architectural structures look completely different when one employs a “building material” which has not been subjected to either detailed investigations or sophisticated calculations. The “Smart_Air” Design Studio was devised to take a closer look at the unusual building material “air,” which we have only just begun to explore, and to make it the centre of a focused design exercise. The objective was to use “air” or, rather, pneumatic technologies, to arrive at structurally sound solutions for enclosing space, which could be considered a “roof” in the widest sense of the term.
series ACADIA
email
last changed 2022/06/07 07:59

_id sigradi2006_e011c
id sigradi2006_e011c
authors Narahara, Taro and Terzidis, Kostas
year 2006
title Optimal Distribution of Architecture Programs with Multiple-constraint Genetic Algorithm
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 299-303
summary A genetic algorithm (GA) is a search technique for optimizing or solving a problem based on evolutionary biology, using terms and processes such as genomes, chromosomes, cross-over, mutation, or selection. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm. In architecture, GAs are of special interest mainly because of their ability to address a problem offering a multiplicity of possible solutions. Contrary to other algorithms where the objective is to accommodate a manually conceived diagram, GAs are emergent procedures that evolve over time through multiple attempt cycles (i.e. generations) and therefore offer a bottom-up approach to design. In addition, by using the computational power of computers they can resolve complex interactions between multiple factors and under multiple constraints offering solutions that occasionally surprise the designer. One of the main problems in architecture today is the quantity of the information and the level of complexity involved in most building projects. As globalization and economic development has started to arise at unprecedented levels, the need for large urban developments have become commonplace. Housing projects for a few hundreds to thousands of people have started to emerge over large urban areas. In such cases, the old paradigm for housing design was the development of high rises that served as stacking devices for multiple family housing units. Such a direction was unfortunately the only way to address excessive complexity using manual design skills mainly because it was simple to conceive but also simple to construct. The unfortunate nature of this approach lies rather in the uniformity, similarity, and invariability that these projects express in comparison to individuality, discreteness, and identity that human beings and families manifest. One of the main areas of complexity that could benefit architecture is in housing projects. In these projects there is a typology of residential units that need to be combined in various schemes that will fulfill multiple functional, environmental, and economic constraints. In this paper, the design of a 200-unit residential complex on a corner of two streets in an urban context was investigated as a case study. Recent advancement in tectonics and structural engineering enables the realization of buildings in mega scales and starts to introduce another layer of complexity into the building programs. Conventional design methods relying on the preconceived knowledge based approaches are no longer reliable. Beyond the certain quantitative factors and the complexity of the problems, search occasionally enters into the unpredictable domain of the human perception. Computational approaches to design allows us to go through thousands of iterations in a second and find the solution sets beyond the reach of designers’ intuitive search spaces. Genetic Algorithm can be a potential derivative for finding optimum design solution from indeterminate search spaces constrained by multi dimensional factors.
keywords Genetic Algorithm; Housing Design; Multiple-constraint
series SIGRADI
email
last changed 2016/03/10 09:55

_id 2006_098
id 2006_098
authors Parthenios, Panagiotis
year 2006
title Critical points for change - A vital mechanism for enhancing the conceptual design process
doi https://doi.org/10.52842/conf.ecaade.2006.098
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 98-105
summary The Conceptual design is not a linear process; it consists of sub-processes, levels of refinement, which are individual but interact with each other. Each level of refinement corresponds to the types of media and tools used during conceptual design. Architects take advantage of a broad palette of tools and media for design, because each tool has its own strengths and weaknesses and provides an additional value—an added level of vision—to the architect. This closely relates to the notion of Critical Points for Change (CPC) a contribution this study makes towards a better understanding of the uniqueness of the conceptual design process. CPC are crucial moments when the architect suddenly becomes able to “see” something which drives him to go back and either alter his idea and refine it or reject it and pursue a new one. They are crucial parts of the design process because they are a vital mechanism for enhancing design. This characteristic of the nature of the conceptual design process is independent of the tools. Nevertheless, the right tools play an extremely important role. The distinctive capabilities of each tool allow the architect to deal successfully with CPC and overcome the points in the design process where he or she feels “stuck.”
keywords Conceptual design; design process; tool; design ability; computational support
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2006_e113b
id sigradi2006_e113b
authors Sanza, Paolo
year 2006
title The built environment revisited digitally: an approach to 2D and 3D CAD teaching
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 215-218
summary There is a characteristic that distinguishes the School of Architecture at Oklahoma State University from other architecture schools in the United States and that is the absence of a design studio in the spring semester of the third year. Among the various classes the students are required to take during this time is ARCH 3253_computer applications in architecture defined in the School catalog as an “introduction to 2D and 3D computer CAD topics and their application in the design process.” The absence of a design studio has allowed [me] to morph an otherwise technically oriented course to a course that weaves the learning of the basic of various computer programs with research, writing, graphic and physical explorations. This paper exposes the pedagogy of the course alongside sample of students’ work during the spring 2006 semester and will disclose its future development as web and film technologies are introduced to the course. The introduction of the “forth dimension” to the course will both augment and foster alternative means of architectural communication by promoting multimodal representations and will respond to the personal observation that in spite of the essentially total use of the computer in the daily creative life of students and professionals alike, the architectural representation output has virtually remained unchanged [and for the most part unchallenged] since the time when pens, pencils, and papers were the media of choice. In addition to its pedagogical character, the paper will also share the personal explorations that triggered following one of the assignments and led to the development and realization of a graphic piece for one of the summer 2006 exhibits at the Scottsdale Museum of Contemporary Art in Scottsdale, Arizona and prompted the initial development of the design of a restaurant, also in Scottsdale, Arizona [in its schematic design phase at the time of the writing of this abstract].
keywords virtual; representation; 4th dimension
series SIGRADI
email
last changed 2016/03/10 09:59

_id ijac20064105
id ijac20064105
authors Sowa, Agnieszka Katarzyna
year 2006
title Towards architect-aided computing design
source International Journal of Architectural Computing vol. 4 - no. 1, 69-85
summary In the design process of some recent, specific architectural projects the part elaborated by computers and machines significantly grows. They could generate, optimize and produce the most complicated and complex solutions, taking over some tasks which before were the domain of architects. This article presents a project carried out by postgraduate students at Eidgenossische Technische Hochschule in Zurich, Switzerland, where such a digital design process was implemented, with all its advantages and disadvantages. The observations and conclusions gained during the work allow the author to formulate the concept of Architect-Aided Computing Design, to define some challenges for architects created by such a working method, and to present an analysis about the potential new software for architectural production.
keywords Structural Optimization; Rapid Prototyping; CNC Production; CAAD Education
series journal
email
more http://www.ingentaconnect.com/content/mscp/ijac/2006/00000004/00000001/art00006
last changed 2007/03/04 07:08

_id sigradi2006_c093b
id sigradi2006_c093b
authors Sánchez Cavazos, María Estela
year 2006
title El Aprendizaje del Diseño Arquitectónico en el mundo digital [Architectural design learning in a digital world]
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 210-214
summary The background of this paper goes back to the yer 2000 when its autor realizad an investigation in the architecture workshops. In that same year she finished her master's thesis about the design process and continued with investigations observing the influence of the computer use in the process. The main goal of the paper is to determine if the digital mediums take an important role between the connection of knowledges, actitudes and habilites for the architectonic design. The methodology used for the data collection was trough participant observations, interviews and cuasiexperiments. The paper shows how the student takes elements from the knowledges, actitudes and habilities, and connects them to realize constructions of new schemes of knowledge in the architectonic design process; the use of old and new tools to design and how it influences the outcome is observed.
series SIGRADI
email
last changed 2016/03/10 10:01

_id a3c8
id a3c8
authors Verdy Kwee, Dean Bruton, Antony Radford
year 2006
title Visual Expressiveness in Educative Architectural Animations
source Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast Asia. 2006, Kuala Lumpur, Malaysia November 29 - December 02, 2006
summary Consider the current graphic capabilities of multimedia authoring tools. Many information technologies have been exploited to the fullest in the gaming and advertising industries. As far as educational materials produced to explain outstanding architectural and many heritage works, most publications still rely on print media. While much digital information has been propagated online through the Internet (and a few CD-ROM formats could also be found) the techniques of delivery have yet to take advantage of potential technologies, preferring only to digitally replicate and hyperlink the structure and content found in their printed cousins. The reason for this slow adoption is not clear and paradoxical since our society places abundant emphasis and stresses the importance of education over games. However, it seems that the industry and, more importantly, the architecture discipline themselves do not appear to promote architectural visualisations as a significant contributor to the education and learning process. Therefore, educative architectural information visualisation may have to set itself apart, especially to generate growth and interest in this area.

This paper does not deal with the technical aspects of visualisation creation processes but proposes to emphasise architectural visualisations – animations, in particular - as a heightened form of art that could be approached with grammatical lens more than merely a technical exercise that aims to serve an outcome or an industry as they are often perceived now. Digital architectural visualisations and their delivery techniques can be expanded much more as an artistic (architectural) expression like architectural writings are to authors, games to game designers. Although differences could be identified, there are numerous lessons that can be drawn from other forms of art to propel architectural visualisations to a new level beyond those seen in real-estate websites, architectural practices and most students’ works in reputed educational institutions.

Architectural information is peculiar to each building. In order to explicate the essences of architectural works (i.e. the vocabularies, designer’s intents, etc), in all fairness, their presentations cannot be generically produced and uniformly adapted. What one technique and approach could successfully achieve in explaining one building cannot exactly be re-applied to another building with the same expected results. Forms, scales, circulation paths, lighting assignments, designer’s intents, other information (and types) to be delivered differ from one building to another. As such, executions are also wide open to be explored to not only address the practical issues but also to express the intentions of the author/s or director/s to strengthen the architectural narratives.

This paper highlights and illustrates by examples, specifically in architectural flythroughs/animations, considerations that need to be addressed in order that the results would serve as an artistic/architectural expression with a degree of educative substance.

keywords Educative, education, animation, flythrough, expression, grammar, art,
series other
type short paper
email
more http://portal.acm.org/citation.cfm?id=1174429.1174461&coll=GUIDE&dl=%23url.coll
last changed 2007/01/04 00:14

_id caadria2006_303
id caadria2006_303
authors YU-CHUN HUANG
year 2006
title A SPACE MAKE YOU LIVELY: A BRAIN-COMPUTER INTERFACE APPROACH TO SMART SPACE
doi https://doi.org/10.52842/conf.caadria.2006.x.b8j
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 303-312
summary This research is paying attention to the new field of “Smart Homes”. The goal of Smart Homes is to provide and more economical dwellings for humans. Le Cobusier envisioned a house as a machine for living. To enable a space to take the initiative in perceiving the demands of the user and to respond with appropriate feedback under diverse conditions, there is a new field development of Brain-Computer Interface (BCI). This research proposes, therefore, a smart space that enables the user to work in an energized way via the BCI system. When the space “perceives” that someone is getting sleepy by monitoring the user’s brainwaves, it will take appropriate action such as providing specific background music or adjusting the lighting and temperature in the room as subliminal reminders to the user to stay alert and productive.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2006_589
id caadria2006_589
authors YU-NAN YEH
year 2006
title FREEDOM OF FORM: THE ORIENTAL CALLIGRAPHY AND AESTHETICS IN DIGITAL FABRICATION
doi https://doi.org/10.52842/conf.caadria.2006.x.v6f
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 589-591
summary Computer-Aided Design (CAD) / Computer-Aided Manufacturing (CAM) related research has been discussed since the 1960's (Ryder, G. et al, 2002, Mark Burry, 2002). Indeed, both Frank O. Gehry and Toyo Ito utilized CAD/CAM to create rich architectural form and in so doing gave birth to a new type of aesthetics. The visualization and liberalization of form space is the single most important characteristic attributable to the use of computers as a design tool. By the 1980's, Laser cutting and Rapid Prototyping techniques developed from CAM, became important new digital tools when researchers and designers discussed the development of form in architecture.
series CAADRIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 197HOMELOGIN (you are user _anon_735212 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002