CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 6985

_id c2f9
id c2f9
authors Friedrich E, Derix C and Hannah S
year 2007
title Emergent Form from Structural Optimisation of the Voronoi Polyhedra Structure
source Proceedings of the Generative Arts conference, Milan, 2007
summary In the course of the exploration of computational means in the architectural design process, in order to investigate more complex, adaptive geometries, the Voronoi diagram has recently gained some attention, being a three-dimensional space-filling structure which is modular but not repetitive. The project looks at the Voronoi diagram as a load-bearing structure, and whether it can be useful for structural optimisation. Hereby the edges of the Voronoi polyhedra are regarded as structural members of a statical system, which then is assessed by structural analysis software. Results seem to indicate that the Voronoi approach produces a very specific structural as well as spatial type of order. Through the dislocation of the Voronoi cells, the statical structure becomes more complex through emergent topology changes, and the initially simple spatial system becomes much more complex thorough emerging adjacencies and interconnections between spaces. The characteristics of the emerging form, however, lie rather in the complexity how shifted spaces and parts are fitted together, than in a radical overall emergent geometry. Spatially as well as a structurally, the form moves from a simple modular repetitive system towards a more complex adaptive one, with interconnected parts which cannot stand alone but rather form an organic whole.
keywords complex geometry, emergence, adaptive topology, voronoi diagram
series other
type normal paper
email christian.derix@aedas.com
more http://www.generativeart.com/
last changed 2012/09/20 18:25

_id ecaade2007_050
id ecaade2007_050
authors Donath, Dirk; Böhme, Luis Felipe González
year 2007
title Constraint-Based Design in Participatory Housing Planning
doi https://doi.org/10.52842/conf.ecaade.2007.687
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 687-694
summary The research presented in this paper deals with the yet unexplored development of a constraint-based design strategy to support participatory housing planning processes in Latin America. The article discusses the implementation criteria of a constraint satisfaction approach to solving the building bulk design problem. This elementary problem to the architecture practice, is concerned with the synthesis of the boundary geometry from the volume, shape and allocation of the building and any part thereof located inside a given zoning lot. A legal solution to a building bulk design problem is a building cubature that complies with all the applicable bulk regulations. The case study applies to the common class of single-family house units produced in Chile and the regulatory framework implemented there. Two different computer implementation criteria are being tested in an ongoing series of trials. The first, and most extensively developed, makes use of Maxon’s XPresso® visual scripting environment to set up a semi-automated controllable design environment that allows to create parametric feature-based 3D models of building bulk solutions. The second approach is currently being tested by using Ilog’s OPL Studio® constraint programming environment to achieve fully automated search and 2D graphic visualization of the complete set of solutions to separate subdomains of the bulk problem.
keywords Constraint-based design, constraint satisfaction problems, building bulk design, participatory planning, low-income housing
series eCAADe
email caad@archit.uni-weimar.de, luisfelipe.gonzalez@usm.cl
last changed 2022/06/07 07:55

_id ijac20075207
id ijac20075207
authors Jabi, Wassim; Potamianos, Iakovos
year 2007
title Geometry, Light, and Cosmology in the Church of Hagia Sophia
source International Journal of Architectural Computing vol. 5 - no. 2, pp. 304-319
summary Designed by a physicist and a mathematician, the Hagia Sophia church in Istanbul, Turkey acted as an experimental test case in which advanced knowledge of geometrical constructs, sophisticated understanding of light behavior, and religious and cosmological beliefs combined to create a magnificent structure. While some of its design concepts are known, many remain hidden. Earthquakes have demolished parts of the church—such as the original dome. Researchers have in the past misinterpreted their observations and perpetuated false conclusions. Lastly, the lack of digital tools has until now prevented verification and analysis of prior findings. In this paper, we integrate traditional historical research, parametric digital analysis, and lighting simulation to analyze several aspects of the church. In particular, we focus on the geometry of the floor plan, the geometry of the apse, and light behavior in the original dome. Our findings point to the potential of digital tools in the discovery of a structure's hidden features and design rules.
series journal
last changed 2007/08/29 16:23

_id bsct_kourkoutas
id bsct_kourkoutas
authors Kourkoutas, Vassilios
year 2007
title Parametric Form Finding in Contemporary Architecture
source Vienna University of Technology; Building Science & Technology
summary The search of new geometry has been during the last years an interesting subject for Contemporary Architecture. As the 21st century brought a new era for architectural design, CAD programs have evolved together with the idea of Form Finding. The possibilities offered make the collaboration of the architect with the computer now possible in terms of searching the appropriate form for given cases. As the analysis of contemporary architectural pieces has indicated, the procedure of architectural design can be semi-automated. Parametric Form Finding is transferring generative approaches into the architectural design workflow by introducing a set of rules to describe the constrains of the form. Given this context, two methods have been realized, which are guided by the user by providing basic two dimensional shapes, restrictions and form characteristics. The approach is fitted in a plug-in for the modeling environment of Rhinoceros that generates three dimensional form based on the user?s input. The methods followed are being evaluated.
keywords Parametric, Form Finding, Rhinoceros, plug-in
series thesis:MSc
type normal paper
email buildingscience@tuwien.ac.at
more http://cec.tuwien.ac.at
last changed 2007/07/22 15:29

_id ascaad2007_046
id ascaad2007_046
authors Lee, S. and K. de Bodt
year 2007
title Plan_B: The architectonics of sonic information
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 587-594
summary The paper addresses the influence of digital technology on architectural design and production, particularly considering the possibilities of sound for the design and conception of architecture based on the dynamic condition, which is present in the “everyday” and its permutations. The day-to-day condition is regarded as a highly dynamic flux of economic, social and political aspects and conceptually linked to sound and musical variation as guiding design principles, to actually retain and reflect the vitality of every day’s measure. We have traced precedents and cases in sound reproduction and its implications on the codification of architecture and have created a digital design tool in Max/MSP. The primary objective of the tool is to produce the corollary between sound reproduction and the conception and production of an architectonic codification, and ultimately to propose a strategy of architectural construct that has given way from the clarity of static geometry to the complexity in dynamic variability, that of dissonance. Virtual architecture and its techniques are considered to express and implement such permutations and induce a measure of change in every step and direction of the design process. The application of digital technology is regarded as the intervening of “apparatus” and to represent a different approach in relation to the prevailing regime.
series ASCAAD
email S.Lee@tudelft.nl
last changed 2008/01/21 22:00

_id ascaad2007_059
id ascaad2007_059
authors Matsushima, S.; D. Sasaki and R. Takenaka
year 2007
title Embodying Architectural Form and Space by Coupling Computer and Human Performance Using Motion Capture Technology: Study on Application of Motion Capture to Design Process for Generating New Geometry
source Em‘body’ing Virtual Architecture: The Third International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2007), 28-30 November 2007, Alexandria, Egypt, pp. 757-766
summary This research aims to develop fundamental design methodologies for human space and product design by motion capture of human activity. It is intended to generate new geometry using a motion capture system as design input device and then to develop it to design interior space and products such as furniture from data extracted from human motion. In order to produce a ubiquitous and comfortable environment, performance modeling focusing on the relationships between space and physical motion is needed. Making an object of complex shape is thought to be a new application of motion capture technology. This research proves that the numeric data of body actions can be transferred and developed to object shapes.
series ASCAAD
email shirom@tutrp.tut.ac.jp
last changed 2008/01/21 22:00

_id ijac20075405
id ijac20075405
authors Oxman, Neri
year 2007
title Get Real Towards Performance-Driven Computational Geometry
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 663-684
summary In historic design conventions geometry has traditionally promoted descriptive manifestations of form. Beyond the realm of geometry, the concept of performance which may inform such manifestations also carries important potential for design generation. This work explores the relation between geometry and performance from a computational-geometry perspective. It does so by revisiting certain analytical tools offered in most of today's 3-D modelers which support the evaluation of any generated surface geometry specifically curvature and draft angle analysis. It is demonstrated that these tools can be reconstructed with added functionality assigning 3-D geometrical features informed by structural and environmental performance respectively. In the examples illustrated surface thickness (as a function of structural performance) is assigned to curvature values, and transparency (as a function of light performance) is assigned to light analysis values. In a broader scope this work promotes a methodology of performance-informed form generation by means of computational geometry. Vector and tensor math was exploited to reconstruct existing analytical tools adapted to function as design generators.
series journal
email neri@mit.edu
last changed 2008/02/25 20:30

_id acadia07_074
id acadia07_074
authors Peters, Brady
year 2007
title The Smithsonian Courtyard Enclosure: A Case-Study of Digital Design Processes
doi https://doi.org/10.52842/conf.acadia.2007.074
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 74-83
summary This paper outlines the processes involved in the design of the Smithsonian Institution’s Patent Office Building’s new courtyard enclosure. In 2004, Foster + Partners won an invited international competition to design the new courtyard enclosure in Washington, D.C. Early in the project, the Specialist Modelling Group (SMG), an internal research and design consultancy, was brought in to advise the project team on computer modelling techniques, develop new digital design tools, and help solve the complex geometric issues involved. Throughout the project, computer programming was used as one of the primary tools to explore design options. The design constraints were encoded within a system of associated geometries. This set-out geometry performed as a mechanism to control the parameters of a generative script. The design evolution involved the use of many different media and techniques and there was an intense dialog between a large team and many consultants. The computer script was a synthesis of the design ideas and was constantly modified and adapted during the design process. The close collaboration between architects, consultants, and fabricators was of key importance to the success of the project. This project, now named The Robert and Arlene Kogod Courtyard, will complete in late 2007.
series ACADIA
email brady.peters@fosterandpartners.com
last changed 2022/06/07 08:00

_id acadia07_230
id acadia07_230
authors Qian, Cheryl Z.; Chen, Victor Y.; Woodbury, Robert F.
year 2007
title Participant Observation Can Discover Design Patterns in Parametric Modeling
doi https://doi.org/10.52842/conf.acadia.2007.230
source Expanding Bodies: Art • Cities• Environment [Proceedings of the 27th Annual Conference of the Association for Computer Aided Design in Architecture / ISBN 978-0-9780978-6-8] Halifax (Nova Scotia) 1-7 October 2007, 230-241
summary Our research aims to understand the mid-level patterns of work that recur across designers and tasks. Our users comprise active architects and civil engineers. The hypothesis is that making such patterns explicit will result in improved expert work practices, in better learning material and suggestions for improvements in parametric design. The literature shows that patterns express design work at a tactical level, above simple editing and below overall conception. We conducted a user experience study based on Bentley’s GenerativeComponents, in which geometry can be related, transformed, generated, and manipulated parametrically within a user-defined framework. After interviewing the system’s chief, we ran a participant-observer study in the January 2007 SmartGeometry workshop. We engaged designers through the role of tutor and simultaneously observed and discussed their design process. We found clear evidence of designers using patterns in the process and discerned several previously unknown patterns. In February at another 10-day workshop, we found more evidence supporting prior findings. The paper demonstrates that participant observation can be an efficient method of collecting patterns about designers’ work and introduces such new patterns. We believe these patterns may help designers work at more creative levels and may suggest new ideas of interest to CAD application developers.
series ACADIA
email cherylq@sfu.ca
last changed 2022/06/07 08:00

_id cf2007_061
id cf2007_061
authors Stavric, Milena; Heimo Schimek and Albert Wiltsche
year 2007
title Didactical Integration of Analog and Digital Tools into Architectural Education
source Computer Aided Architectural Design Futures / 978-1-4020-6527-9 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Futures / 978-1-4020-6527-9] Sydney (Australia) 11–13 July 2007, pp. 61-70
summary This paper describes the new syllabus of the course “Methods of representation” that has evolved in the first year of architectural study at our university. Due to the rapidly growing digital possibilities students need to know/learn the new topics and tools which are relevant in modern architectural design practice. Our students should be empowered rather than overwhelmed by the arsenal of digital tools available today. In this course we try to define the essential skills in representation which we achieve through the synthesis of digital and analog methods and tools. Digital and analog methods and tools we use are: study and construction of complex geometry, observation and analysis of organic forms and their representation through hand drawing, collaborative work through peer-to-peer learning on our web interface, NURBS-modelling, rapid prototyping and desktop publishing.
series CAAD Futures
email mstavric@tugraz.at
last changed 2007/07/06 12:47

_id talapov02_paper_eaea_2007
id talapov02_paper_eaea 2007
authors Talapov, Vladimir
year 2008
title Computer Modeling in Architecture by Example of St. Basil's Cathedral in Moscow
source Proceedings of the 8th European Architectural Endoscopy Association Conference
summary The aim of this article was testing in practice the modern computer modeling tools in real time. We took one of the most beautiful and geometrically complex structures in the world Architecture - St. Basil’s Cathedral in Moscow for that. As result we created the computer model of outside of this structure. And now we correct and improve its geometry and try to get its photorealistic and artistic visualization.
keywords computer model, St. Basil’s Cathedral
series EAEA
type normal paper
email mtalapova@mail.cis.ru
more http://info.tuwien.ac.at/eaea
last changed 2008/04/29 20:46

_id sigradi2007_af68
id sigradi2007_af68
authors Veloso, Claudia; Carlos Murad
year 2007
title The Film as urban experience: The Fellini´s Roma [O Filme enquanto experiência urbana: A Roma fragmentária de Fellini]
source SIGraDi 2007 - [Proceedings of the 11th Iberoamerican Congress of Digital Graphics] México D.F. - México 23-25 October 2007, pp. 448-451
summary This research is done in the field of studies about the potential of imaginal images in the unveiling of the multiple space-time alternances which make up our urban experience and is supported by phenomenological perspective of the imagination and Bachelard´s poetical image (1957,60) in the analysis do filme “Roma de Fellini”(1972). Of cinema as a possibility of highlighting the city and its geometry in a fragmentary and spectacular form. With the intention of arriving at a better dialogue among new languages and styles of life with the intention of opening new possibilities of a better understanding of the urban.
keywords Poetical image; cinema; poetical urban; landscapes urban; imaginal film
series SIGRADI
email clauveloso@terra.com.br
last changed 2016/03/10 10:02

_id sigradi2008_180
id sigradi2008_180
authors Vincent, Charles
year 2008
title Gulliver in the land of Generative Design
source SIGraDi 2008 - [Proceedings of the 12th Iberoamerican Congress of Digital Graphics] La Habana - Cuba 1-5 December 2008
summary The current trend in architectural design towards architectural computing has been treated both from a philosophical standing point and as an operational systems’ problem, in a quest for explications which could at last break ground for a more broad development and adoption of design tools. As Kostas Terzidis (2007) puts it, the intuitiveness that architects have put on so high a pedestal seems to be the central issue to be dealt with by both views. There seems to be no apparent shortcut toward the reconciliation between traditional practice and new media and most certainly it is not only a problem of interface design, but one of design method clarification and reinterpretation of those methods into computing systems. Furthermore, there’s no doubt left as to whether computing systems can generate such new patterns as to impact our own understanding of architecture. But even if computer algorithms can make possible the exploration of abstract alternatives to an abstract initial idea, as in Mathematica and Processing, the issue of relating abstract and geometric representations of human centered architecture lays in the hands of architects, programmers or, better yet, architect-programmers. What seems now to be the relevant change is that architectural design might escape from the traditional sequence embedded in the need – program – design iterations – solution timeline, substituted by a web of interactions among differing experimental paths, in which even the identification of needs is to be informed by computing. It is interesting to note that the computational approach to architectural design has been praised for the formal fluidity of bubbles and Bezier shapes it entails and for the overcoming of functionalist and serialization typical of modern architecture. That approach betrays a high degree of canonic fascination with the tools of the trade and very little connection to the day to day chores of building design. On the other hand, shall our new tools and toys open up new ways of thinking and designing our built landscape? What educational issues surface if we are to foster wider use of the existing technologies and simultaneously address the need to overtake mass construction? Is mass customization the answer for the dead end modern architecture has led us to? Can we let go the humanist approach begun in Renascence and culminated in Modernism or shall we review that approach in view of algorithmic architecture? Let us step back in time to 1726 when Swift’s ‘Travels into Several Remote Nations of the World by Lemuel Gulliver’ was first published. In Swift’s fierce critic of what seemed to him the most outrageous ideas, he conceived a strange machine devised to automatically write books and poetry, in much the same generative fashion that now, three centuries later, we begin to cherish. “Every one knew how laborious the usual method is of attaining to arts and sciences; whereas by his contrivance, the most ignorant person at a reasonable charge, and with a little bodily labour, may write books in philosophy, poetry, politicks, law, mathematics and theology, without the least assistance from genius or study. He then led me to the frame, about the sides whereof all his pupils stood in ranks. It was twenty foot square, placed in the middle of the room. The superficies was composed of several bits of wood, about the bigness of a dye, but some larger than others. They were all linked together by slender wires. These bits of wood were covered on every square with paper pasted on them; and, on these papers were written all the words of their language in their several moods, tenses, and declensions, but without any order. The professor then desired me to observe, for he was going to set his engine at work. The pupils at his command took each of them hold of an iron handle, whereof there were forty fixed round the edges of the frame; and giving them a sudden turn, the whole disposition of words was entirely changed. He then commanded six and thirty of the lads to read the several lines softly as they appeared upon the frame; and where they found three or four words together that might make part of a sentence, they dictated to the four remaining boys who were scribes. This work was repeated three or four times, and at every turn the engine was so contrived, that the words shifted into new places, as the square bits of wood moved upside down.” (Jonathan Swift, Gulliver’s Travels, A Voyage to Balnibarbi) What astonishing forecast did Swift show in that narrative that, in spite of the underlying incredulity and irony, still clarifies our surprise when faced to what might seem to some of us just an abandonment of all that architects and designers have cherished: creativeness and inventiveness. Yet, we could argue that such a radical shift in paradigm occurred once when master builders left the construction ground and took seat at drafting boards. The whole body of design and construction knowledge was split into what now seem to us just specialties undertaken by more and more isolated professionals. That shift entailed new forms of representation and prediction which now each and all architects take for granted. Also, Cartesian space representation turned out to be the main instrument for professional practice, even if one can argue that it is not more than the unfolding of stone carving techniques that master builders and guilds were so fond of. Enter computing and all its unfolding, i.e. DNA coding, fractal geometry, generative computing, nonlinear dynamics, pattern generation and cellular automata, as a whole new chapter in science, and compare that to conical perspective, descriptive and analytical geometry and calculus, and an image begins to form, delineating a separation between architect and digital designer. In previous works, we have tried approaching the issues regarding architects education in a more consensual way. But it seems now that the whole curricular corpus might be changed as well. The very foundations upon which we prepare future professionals shall change, not only in College, but in High School as well. In this paper, we delve further into the disconnect between current curricula and digital design practices and suggest new disciplinary grounds for a new architectural education.
keywords Educational paradigm; Design teaching; Design methods;
series SIGRADI
email cvincent@mackenzie.br
last changed 2016/03/10 10:02

_id ijac20075404
id ijac20075404
authors Wierzbicki, Madalina N.; de Silva, Clarence W.
year 2007
title Design Tools for Foldable Structures with Application of Fuzzy Logic
source International Journal of Architectural Computing vol. 5 - no. 4, pp. 645-662
summary Rigidly foldable shells offer tremendous potential for developing kinetic architectural structures. However, the added element of motion poses new design challenges. Initially, sketchy shell geometry is constructed to reflect the intended form. Further steps involve assuring an error free folding within a range that satisfies desired functional requirements. The kinematics of a parallel topology of the shell's geometry is difficult to express algorithmically what prevents from developing of automated adjustment tools based on computational methods. The geometry can be adjusted manually based on intuitive observations; however the process is tedious, time consuming and unpredictable. This paper develops automated adjustment tools based on the intuitive approach of a human designer. The study applies the fuzzy logic formalism as a computational interface between human approach and structured adjustments to the geometry. The advantages of fuzzy logic stem from its natural ability to represent human knowledge and effectiveness in reconciling ambiguities, uncertainties and redundancies that the intuitive human approach brings along. The development steps of fuzzy logic based algorithm are presented. Performed evaluation tests and the results are discussed.
series journal
last changed 2008/02/25 20:30

_id 0d4c
authors Fischer, T., Herr, C.M., Burry, M.C. and Frazer, J.H.
year 2002
title Tangible Interfaces to Explain Gaudi's Use of Ruled-Surface Geometries: Interactive Systems Design for Haptic, Non-verbal Learning
doi https://doi.org/10.52842/conf.caadria.2002.131
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 131-138
summary This paper summarises the development of a machinereadable model series for explaining Gaudí’s use of ruled surface geometry in the Sagrada Familia in Barcelona, Spain. The first part discusses the modeling methods underlying the columns of the cathedral and the techniques required to translate them into built structures. The second part discusses the design and development of a tangible machine-readable model to explain column-modeling methods interactively in educational contexts such as art exhibitions. It is designed to explain the principles underlying the column design by means of physical interaction without using mathematical terms or language.
series CAADRIA
email sdtom@polyu.edu.hk
last changed 2022/06/07 07:50

_id ecaade2017_309
id ecaade2017_309
authors Lo Turco, Massimiliano, Zich, Ursula, Astolfi, Arianna, Shtrepi, Louena and Botto Poaola, Matteo
year 2017
title From digital design to physical model - Origami techniques applied to dynamic paneling shapes for acoustic performance control
doi https://doi.org/10.52842/conf.ecaade.2017.2.077
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 77-86
summary The recent trend toward non-standard and free form architecture has generated a lot of debate among the Scientific Community. The reasons can be found in the renewed interest in organic shapes, in addition to recent and powerful capabilities of parametric platforms. In this regard, the Visual Programming Language (VPL) interface gives a high level of freedom and control for conceiving complex shapes. The geometric problems in identifying a suitable shape have been addressed by relying on the study of Origami. The control of variable geometry has required the use of algorithmic models that ensure fast changes and free control of the model, besides a physical one made of rigid cardboard to simulate its rigid-foldability. The aim is to present a prototype of an adaptive structure, with an acoustic application, to control sound quality and perception in spaces where this has a central role, such as theatres or concert halls.
keywords parametric modeling; generative design; shape and form studies; acoustics conditions; digital Representation
series eCAADe
email massimiliano.loturco@polito.it
last changed 2022/06/07 07:59

_id ga0014
id ga0014
authors McGuire, Kevin
year 2000
title Controlling Chaos: a Simple Deterministic System for Creating Complex Organic Shapes
source International Conference on Generative Art
summary It is difficult and frustrating to create complex organic shapes using the current set of computer graphic programs. One reason is because the geometry of nature is different from that of our tools. Its self-similarity and fine detail are derived from growth processes that are very different from the working process imposed by drawing programs. This mismatch makesit difficult to create natural looking artifacts. Drawing programs provide a palette of shapes that may be manipulated in a variety ways, but the palette is limited and based on a cold Euclidean geometry. Clouds, rivers, and rocks are not lines or circles. Paint programs provide interesting filters and effects, but require great skill and effort. Always, the details must be arduously managed by the artist. This limits the artist's expressive power. Fractals have stunning visual richness, but the artist's techniques are limited to those of choosing colours and searching the fractal space. Genetic algorithms provide a powerful means for exploring a space of variations, but the artist's skill is limited by the very difficult ability to arrive at the correct fitness function. It is hard to get the picture you wanted. Ideally, the artist should have macroscopic control over the creation while leaving the computer to manage the microscopic details. For the result to feel organic, the details should be rich, consistent and varied, cohesive but not repetitious. For the results to be reproducible, the system should be deterministic. For it to be expressive there should be a cause-effect relationship between the actions in the program and change in the resulting picture. Finally, it would be interesting if the way we drew was more closely related to the way things grew. We present a simple drawing program which provides this mixture of macroscopic control with free microscopic detail. Through use of an accretion growth model, the artist controls large scale structure while varied details emerge naturally from senstive dependence in the system. Its algorithms are simple and deterministic, so its results are predictable and reproducible. The overall resulting structure can be anticipated, but it can also surprise. Despite its simplicity, it has been used to generate a surprisingly rich assortment of complex organic looking pictures.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id architectural_intelligence2023_6
id architectural_intelligence2023_6
authors Natalie Alima
year 2023
title InterspeciesForms the hybridization of architectural, biological and robotic agencies
doi https://doi.org/https://doi.org/10.1007/s44223-023-00025-0
source Architectural Intelligence Journal
summary Situated in the field of architectural biodesign, InterspeciesForms explores a closer relationship between the fungus Pleurotus ostreatus and the designer in the creation of form. The intention of hybridizing mycelia’s agency of growth with architectural design aesthetic, is to generate novel, non- indexical crossbred designed outcomes. The purpose of this research to advance architecture's existing relationship with the biological and evolve preconceived notions of form. In order to establish a direct dialogue between architectural and mycelia agencies, robotic feedback systems are implemented to extract data from the physical realm and feed it into the digital. Initiating this cyclic feedback system, mycelia growth is scanned in order to computationally visualize its entangled network and agency of growth. Utilizing mycelia’s physical data as impute, the architect then embeds design intention into this process through customized algorithms based on the logic of stigmergy. In order to bring this cross-bred computational outcome back into the physical realm, form is 3D printed with a customized mixture of mycelium and agricultural waste. Once the geometry has been extruded, the robot patiently waits for the mycelia to grow and react to the organic 3D- printed compound. The architect then responds with a countermove, by scanning this new growth and continuing the cyclic feedback system between nature-machine and the architect. This procedure demonstrates form emerging in real time according to the co-creational design process and dynamic dialogue between architectural and mycelia agencies.
series Architectural Intelligence
email alimanatalie@gmail.com
last changed 2025/01/09 15:00

_id ecaade2017_306
id ecaade2017_306
authors Rossi, Michela and Buratti, Giorgio
year 2017
title Form is Matter - Triply periodic minimal surfaces structures by digital design tools
doi https://doi.org/10.52842/conf.ecaade.2017.2.259
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 259-268
summary Architecture and biology teach that the shape affects mechanical behaviour of structures therefore geometry is the basic concept of design, with an ethic responsible and sustainable approach, following the nature's organic model. Industrial design may apply formal properties of elementary shapes and basic design rules to manage the "geometrical behaviour" of new structural surfaces. The research aims to apply digital tools to the design of surface structures that maximise the matter efficiency in the development of "solid fabrics" with parametric controlled geometry.
keywords Minimal surfaces; Parametric and generative design; Shape and form studies; Digital fabrication
series eCAADe
email giorgio.buratti@polimi.it
last changed 2022/06/07 07:56

_id caadria2018_243
id caadria2018_243
authors Yin, Shi and Xiao, Yiqiang
year 2018
title Research on the Impact of Traditional Urban Geometry on Outdoor Thermal Environment - Case Study of Neighbourhoods with Arcade Street in South China
doi https://doi.org/10.52842/conf.caadria.2018.2.503
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 503-512
summary With the deterioration of urban environment gradually in these decades, the demand for improving the outdoor thermal environment is increasing. The traditional architecture and urban planning contain abundant climate responding strategy, while current studies about it are still insufficient. Furthermore, many researches had profound results on how different urban design parameters would impact outdoor thermal comfort, but only a few of them could achieve an effective transformation into a practical scenario. Thus, this paper attempts to present the impact of different traditional urban form, which is extracted from different neighborhoods with arcade street in south China, on the outdoor thermal environment, through field measurements and climatic simulation with Envi-met. Moreover, these different complex urban forms were transferred into a simplified form with uniform character and simulating based on the same boundary condition. Comparing the SVF (Sky View Factor) and PET (Physiological Equivalent Temperature) of each point, the organic urban form would lead better thermal environment than others on the main road. On the other hand, the SVF of a point is not the only one aspect of its PET, which related with the form of urban geometry as well.
keywords Climate Responsive Urban Design; Traditional Arcade-Street Neighborhood; Urban Geometry; Outdoor Thermal Comfort
series CAADRIA
email yinshity@gmail.com
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 349HOMELOGIN (you are user _anon_415829 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002