CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 964

_id sigradi2009_957
id sigradi2009_957
authors Baerlecken, Daniel Michael; Gernot Riether
year 2009
title From texture to volume: an investigation in quasi-crystalline systems
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary The relation between texture, pattern and massing is a fundamental question in architecture. Classical architecture, as Leon Battista Alberti states in “De re aedificatoria” (Book VI, Chapter 2), is developed through massing and structure first; texture is added afterwards to give the bold massing and structure beauty. Only the ornamentation adds pulcritudo to the raw structure and massing. Rather than starting with a volume and applying texture afterwards, the Digital Girih project started with textural operations that informed the overall volume later. The stereometric, top-down methodology is questioned through the bottom-up methodology of the Girih project. Girih lines of traditional Islamic patterns were used as a starting point. The aspect of 3-dimensionality was developed analogue as well as digital, using the deformability of different materials at various scales and digital construction techniques as parameters. The flexibility within the Girih rules allowed the system to adapt to different tasks and situations and to react to different conditions between 2- and 3- dimensionality. The project in that way explored a bottom-up process of form generation. This paper will describe the process of the project and explain the necessity of digital tools, such as Grasshopper and Rhino, and fabrication tools, such as laser cutter and CNC fabrication technology, that were essential for this process.
keywords Generative Design; Parametric Design; Tessellation; Form Finding; Scripting
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2009_marek_hnizda
id ascaad2009_marek_hnizda
authors Hnizda, Marek
year 2009
title Systems-Thinking: Formalization of parametric process
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 215-223
summary This paper details a design process focused on explicit digital parametric modeling as an integral system-outcome design. This investigation isolates and alters a simple geometric form (cylinder) in a constructed architectural design method. Systems are defined as logical, sequential operations inherent to the resultant effects. These operations within each system are composed of various parameters, singular entities containing or referencing data. Given specific data, operations are preformed culminating with corresponding outcomes. The two main components of this research pertain to object extraction and transformation. A single grain silo (cylinder), as the architectural/geometric object under examination, is tested using a system of varied parameters inputted into the program Grasshopper, an “explicit history” graphic plug-in for Rhinoceros. This application is utilized to digitally manipulate parameters as objects in a nodal arrangement. Throughout the operations execution, this isolated silo will be transformed into a multitude of versions, then regrouped into the original cluster of silos to expose the implications from patterning, adjacency, and repetition given the proximity of the each silo and its new parametric characteristics. As the various parameters in specific operations affect the system as a whole, so is each adjacent silo in proximity given the same or similar operation? This then is translated and reflected in the outcome. This research seeks to explore design process by applying constant digital 3-D reductive geometric, modular forms inviting systems thinking in parametric environments that can lead to architectural design implications. By focusing on the technical aspect of the parameterization and valuing functionality rather then style, the process becomes focused on formal qualities as the system-outcome relationships. This research tests the “aesthetic implications” of a varied mode of digital design, namely the investigation of an architectural process utilizing parametric design.
series ASCAAD
email
last changed 2009/06/30 08:12

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2020_281
id caadria2020_281
authors Abdelmohsen, Sherif and Hassab, Ahmed
year 2020
title A Computational Approach for the Mass Customization of Materially Informed Double Curved A Computational Approach for the Mass Customization of Materially Informed Double Curved Façade Panels
doi https://doi.org/10.52842/conf.caadria.2020.1.163
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 163-172
summary Despite recent approaches to enable the mass customization of double curved façade panels, there still exist challenges including waste reduction, accuracy, surface continuity, economic feasibility, and workflow disintegration. This paper proposes a computational approach for the design and fabrication of materially informed double curved façade panels with complex geometry. This approach proposes an optimized workflow to generate customizable double curved panels with complex geometry and different material properties, and optimize fabrication workflow for waste reduction. This workflow is applied to four different fabrication techniques: (1) vacuum forming, (2) clay extrusion, (3) sectioning, and (4) tessellation. Four experiments are introduced to apply surface rationalization and optimization using Rhino and Grasshopper scripting. Upon simulating each of the four design-to-fabrication techniques through different iterations, the experiment results demonstrated how the proposed workflows produced optimized surfaces with higher levels of accuracy and reduced waste material, customized per type of material and surface complexity.
keywords Digital fabrication; Double curved facades; Mass customization; Design-to-fabrication
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2017_240
id ecaade2017_240
authors Al-Sudani, Amer, Hussein, Hussein and Sharples, Steve
year 2017
title Sky View Factor Calculation - A computational-geometrical approach
doi https://doi.org/10.52842/conf.ecaade.2017.2.673
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 673-682
summary Sky view factor (SVF) is a well-known parameter in urban-climatic studies, but there is a lack of consensus on its effectiveness, especially with regard to the interpretation of changes in urban air temperatures. This led the authors to develop the new concept of the partial sky view factor (SVFp), which showed promise in a previous study. The objective of this study is to save the time associated with manual methods of calculating SVF and SVFp by developing a Rhino-Grasshopper component to quantify them via the hemispheric projection of a 3D model. In addition, a different approach, in terms of a hemispheric projection to calculate SVF, will be introduced by another component, and the pros and cons of each approach are considered. We will name these methods 'Ray Method' and 'Geometrical Method' respectively. The Ray Method has achieved a good balance between accuracy, processing time and urban scale and complexity compared to the Geometrical Method.
keywords Sky view factor; parametric design; Rhino - Grasshopper; urban morphology; partial Sky view factor
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2013_183
id sigradi2013_183
authors Andino, Dulce; Sheng-Fen Chien
year 2013
title Embedding Shape Grammars in a Parametric Design Software
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 202 - 206
summary The Garifuna are a group of people that live on the northern coast of Honduras and the coast of Belize. They have a very distinct and vibrant culture. Minority cultures are currently absorbed by mainstreamed cultures and the Garifuna ethnicity is directly influenced by this phenomenon. In this research it is of special concern to encapsulate Garifuna vernacular architecture by means of shape grammars. The research provides a clear documentation of the grammars implemented in Grasshopper, as well as discusses about the issues of embedding shape grammars in the Rhino/Grasshopper environment.
keywords Garifuna; shape grammar; Parametric shape grammars; Grasshopper
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2021_225
id ecaade2021_225
authors Anishchenko, Maria and Paoletti, Ingrid
year 2021
title Yarn-Level Modeling of Non-Uniform Knitted Fabric for Digital Analysis of Textile Characteristics - From a bitmap to the yarn-level model
doi https://doi.org/10.52842/conf.ecaade.2021.1.253
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 253-262
summary Modern CNC weft knitting machines are capable to produce textiles with complex non-uniform structures and shapes in a single operation with minimum human intervention. The type of knit structure and the settings of the knitting machine significantly influence the fabric characteristics and its role in architectural comfort. However, there is still no open-access tool for fast and efficient analysis of textiles with consideration of their knit structure, especially if they are knitted non-uniformly. Moreover, the existing methodologies of digital modeling of the knit structure are not linked to the actual production of textiles on flat-bed knitting machines. This paper presents a tool that "reads" a bitmap image that can be as well imported into a knitting machine software and generates a yarn-level geometry of the knitted textiles, that can be further integrated into the behavior analysis software within the rhino-grasshopper environment. This methodology helps to preview and analyze knitted textiles before production and can help to optimize the programming of bespoke knitted textiles for large-scale architectural applications.
keywords knitting; computational knitting; digital simulation; textile characteristics; textiles for architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_022
id ecaade2014_022
authors Asterios Agkathidis and Tuba Kocaturk
year 2014
title Deceptive Landscape Installation - Algorithmic patterning strategies for a small pavilion
doi https://doi.org/10.52842/conf.ecaade.2014.2.071
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 71-79
summary This paper reflects a collaborative, research led design project, aiming to explore the potentials offered by incorporating parametric / generative tools and performative lighting simulation software in order to design and fabricate a small pavilion for the School of Architecture. The Deceptive Landscape pavilion was designed in the framework of a masters level, research led, and collaborative design studio. During its intense 12 weeks schedule, student teams were asked to explore and apply generative / parametric tools such as Rhino and Grasshopper, in order to design and later construct a small pavilion, with a theme of their choice. In addition, each team was asked to optimise their design proposal by embedding environmental software plug-ins (e.g. DIVA for Rhino) in their design process, thereby aiming to re-inform their parametric models and set performance targets. Finally each team was expected to propose a file to factory fabrication technique, following all constrains of a limited, predetermined budget. The most convincing and consistent proposal, was then chosen for fabrication. The finalised project serves as verification of the effectiveness of the design system and teaching methods used.
wos WOS:000361385100006
keywords Generative design, parametric design, pavilion installation, fabrication;
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia22_128
id acadia22_128
authors Azel, Nicolas; Pachuca, Brandon; Wilson, Lucien
year 2022
title Closing the Gap
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 128-137.
summary This paper shares KPF Cloud Tools, a platform for using Rhino Compute (McNeel’s REST API for RhinoCommon and Grasshopper) to run a library of Grasshopper tools through a cloud server via a Rhino plugin with a procedurally generated user interface, making it quick to deploy new tools (Robert McNeel & Associates 2010). We describe the professional challenges that the KPF Cloud Tools platform solves, document the technical implementation of the platform, and illustrate its benefit through the impact on a large architectural practice.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ijac201311303
id ijac201311303
authors Beorkrem, Chris; Mitchell McGregor, Igor Polyakov, Nicole Desimini
year 2013
title Sphere Mapping: a method for responsive surface rationalization
source International Journal of Architectural Computing vol. 11 - no. 3, 319-330
summary The method proposed in this project addresses the parametric manipulation of a given pattern to respond directly to a parametric surface. The research attempts to propose a method for attaching fixed sized objects to a free flowing surface or "blanket." The model can be used to interrogate a series of shapes and forms with the same componentry. Continuing the research of Kevin Rotheroe, Yale University and founder of FreeForm Design. Rotheroe and his students developed a series of studies in material and surface properties. By utilizing a proven pattern, the proposed method sets parameters derived from the formal properties of the original pattern and produces a new pattern that is responsive to the curvature of a complex surface. The workflow developed in this research consists of a complex blending of tools in Rhino Grasshopper and Gehry Technologies Digital Project. The intent is to achieve the aesthetics and structure offered by Rotheroe's original research and to add a responsive precision that provides an accurate adaptation of the pattern based on curvature of a specific computationally defined surface.
series journal
last changed 2019/05/24 09:55

_id ecaade2012_057
id ecaade2012_057
authors Bielik, Martin ; Schneider, Sven ; König, Reinhard
year 2012
title Parametric Urban Patterns: Exploring and integrating graph-based spatial properties in parametric urban modelling
doi https://doi.org/10.52842/conf.ecaade.2012.1.701
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 701-708.
summary The article presents a graph-based spatial analysis toolset (“decoding spaces”components) which we have recently developed as an extension of the visual scripting language Grasshopper3D for Rhino. These tools directly integrate spatial analysis methods into CAD design software which can have a signifi cant effect on current design workfl ows. However,grasshopper doesn’t only enable the results of analyses to be used in the standard Rhino modelling environment. It also makes it possible to integrate spatial analysis into a parametric design approach as discussed in this paper. The functionality of this toolset is demonstrated using a simple urban design scenario where we introduce the idea of parametric patterns based on graph-measures.
wos WOS:000330322400074
keywords Spatial analysis; parametric modelling; urban layout; design process; decoding spaces
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia23_v2_398
id acadia23_v2_398
authors Callahan, Bryant
year 2023
title Specularia: Spectral Dayighting Simulation in CEA- A Rhino Grasshopper Plugin for Spectral Daylight Simulation and Analysis in Controlled Environment Agriculture
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 398-407.
summary This project, Specularia, develops a modeling tool allowing daylight to be simulated and assessed for plant-centric metrics (fig. 1) in discrete projects, including the spec- tral composition of light with regard to region, climate, weather, building envelope, and surrounding context. By accurately simulating the quality of daylight for both people and plants, new ways of designing spaces emerge that offer a hybrid way of thinking about agricultural elements in urban environments.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id caadria2024_210
id caadria2024_210
authors Chen, Hsin and Hou, June-Hao
year 2024
title A Pneumatic System Design Toolkit for Learning and Creative Applications
doi https://doi.org/10.52842/conf.caadria.2024.3.371
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 3, pp. 371–380
summary Pneumatic systems are increasingly utilized in various fields. Applications of such systems include interactive installations, architectural skins, bionic designs, wearables, soft robotics, and more. This trend has heightened the need for professionals in design and art to integrate pneumatic systems into their work. However, most pneumatic simulation software emphasizes the expertise of devices; operating logic in different fields can become obstacles for designers. In this paper, we introduced a lightweight toolkit for interactive planning of pneumatic systems in design, built on the parametric modelling software Rhino Grasshopper. Our toolkit focuses on the comprehensive consideration of space, equipment, human sensory experience, and interactive scenarios. Users can map real equipment functions onto a virtual model within the 3D software, and these elements are organized in virtual space and linked in the visual programming interface to form the pneumatic system's initial framework. Three pneumatic design cases are used to test the toolkit, including one displayed at an art and technology exhibition. An integrated workflow is shown to produce preliminary pneumatic system diagrams and interactive scenario simulations. This proposed approach provides opportunities for integration and creative applications in the pneumatic and design fields based on modelling software familiar to designers.
keywords Pneumatic, Interactive Installation, Creative Applications, Workflow, Plug-in Tool
series CAADRIA
email
last changed 2024/11/17 22:05

_id caadria2020_320
id caadria2020_320
authors Cheng, Jiahui, Zhang, Zhuoqun and Peng, Chengzhi
year 2020
title Parametric Modelling and Simulation of an Indoor Temperature Responsive Rotational Shading System Design
doi https://doi.org/10.52842/conf.caadria.2020.1.579
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 579-588
summary We present a digital design strategy for developing an intelligent rotational shading system responsive to changes in indoor temperatures. The strategy was first modelled with an Arduino-based physical prototype, identifying the concept of "mapping" between building indoor air temperature and rotational movement (angle) of external solar shading. A virtual parametric modelling approach was then followed to test three methods of mapping: linear, quadratic and logarithmic. The aim was to examine the performative differences exhibited by the three mapping methods in terms of the total comfort hours and estimated cooling energy demand during summer months. A typical cellular office in the Arts Tower of University of Sheffield was chosen for the parametric modelling (Rhino-Grasshopper) and environmental simulation (Honeybee-Ladybug) of horizontal and vertical rotational shading system design. The simulation shows that the horizontal shading system rotating according to the linear mapping methods achieve greater total comfort hours with lower cooling energy demand in the case of Arts Tower in Sheffield, UK.
keywords indoor temperature responsive shading; temperature-angle mapping; parametric design; kinetic shading; overheating
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia11_234
id acadia11_234
authors Chok, Kermin
year 2011
title Progressive Spheres of Innovation: Efficiency, communication and collaboration
doi https://doi.org/10.52842/conf.acadia.2011.234
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 234-241
summary Over the last few years, a large majority of construction work has moved overseas. In response to this, our engineering practice has been involved in a large number of Asian and Middle East design competitions, usually executed in a compressed timeframe. Building codes usually include very specific requirements regarding the lateral performance of a building under seismic and wind loads. This is especially true in China. Our structural engineering practice has thus developed a variety of digital tools customized to building code requirements, in order to provide relevant structural feedback in an appropriate design time frame. The paper will discuss our recent digital design work in the context of building code requirements and information sharing. Our innovations have centered on three progressive spheres of innovation: internal efficiency, communication and collaboration. We propose that only with closer and more transparent collaboration will the building industry be effective and efficient in meeting clients’ needs. However, without first addressing a firm’s internal capabilities of efficiency and communication, the firm will be unable to effectively participate in the collaborative process. This paper begins by discussing various custom Rhino-Grasshopper components to facilitate our internal design process. We then touch on the communication realm discussing work in lowering the barriers for information sharing. Lastly, we explore the necessary shifts in thinking required to move beyond linear design exploration and the exciting opportunity to deliver truly innovative design solutions.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia23_v3_193
id acadia23_v3_193
authors Crolla, Kristof; Tahir Sheikh, Abdullah
year 2023
title Immersive Realities
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Workshop “IMMERSIVE REALITIES: Transforming Architectural Design Workspaces for the age of Extended Reality (XR)” (see Figure 1) was set up in response to observations that the potential of Virtual Reality (VR) for architecture design is relatively underused and under-implemented in architectural education and practice (Sheikh and Crolla 2023). The workshop introduced participants to the potential of a newly developed XR tool, named “Grasshopper VR 1.0 (Beta)” (GHVR) (see Figure 2), that allows architects and designers to work in VR in their usual Rhino + Grasshopper environment, while being immersed in their designs at full-scale in real time. This immersive virtual workspace instantly provides users with valuable insights into their parametric designs and allows them to explore the spatial relationships, scale, and overall experience of their creations. The workshop explained the tool’s development, demonstrated its functionality, and guided attendees through its basic usage and potential applications..
series ACADIA
type workshop
email
last changed 2024/04/17 14:00

_id ecaade2020_314
id ecaade2020_314
authors Das, Avishek, Worre Foged, Isak and Jensen, Mads Brath
year 2020
title Designing with a Robot - Interactive methods for brick wall design using computer vision
doi https://doi.org/10.52842/conf.ecaade.2020.2.605
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 605-612
summary The deterministic and linear nature of robotic processes in architectural construction often allows no or very little adjustments during the fabrication process. If any need for modification arise the process is usually interrupted, changes are accommodated, and the process is resumed or restarted. The rigidity in this fabrication process leaves little room for creative intervention and human activities and robotic process are often considered as two segregated processes.The paper will present and discuss the methodological and design challenges of interactive robotic fabrication of brickwork with an industrial robotic arm, a webcam and bricks with varying color tones. Emphasis will be on the integration of external computer vision libraries within Rhino Grasshopper to augment the interactive robotic process. The paper will describe and demonstrate a framework comprising (1) robotic pick and place, material selection and evaluation using computer vision, (2) interactive robotic actuation and (3) the role of human input during a probabilistic fabrication-based design process.
keywords interactive robotic fabrication; human robot collaboration; computer vision; masonry; machine learning
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2012_214
id ecaade2012_214
authors Das, Subhajit ; Dutt, Florina
year 2012
title Design optimization in a hotel and offi ce tower through intuitive design procedures and advanced computational design methodologies. Façade design optimization by computational methods
doi https://doi.org/10.52842/conf.ecaade.2012.1.235
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 235-243
summary The research topic of this paper exemplifies design optimization techniques of a hotel/office tower in Central China (Nanjing city), which faces subtropical humid climate throughout the year. The main intent of the project is to fi nd optimized design solution with the aid of parametric design tools and Visual Basic Scripting techniques (in Rhino Script & Grasshopper) combined with intuitive design process. In any urban context, we firmly believe that architectural design is a responsive phenomenon, which faces diverse interaction with the user & the local climate. The building design of the proposed tower acknowledges these responsive factors of the design with the environment along with building users or residents. Consequently, we strive to develop a sustainable design solution, which is ecologically efficient and psychologically conducive to the wellbeing of the user. We developed our intuitive design product with complex computational design toolsets to leverage design and energy efficiency. In this procedure, we draw major design concepts and geometrical typologies from natural systems in the form of bio mimicry or biologically inspired design process. Overall, this research paper outlines the significance and relevant benefi ts of the combination of intuitive design (from experience, expertise and architects skills) with parametric scripting tools.
wos WOS:000330322400023
keywords Sustainable Building Façade; Parametric Architecture; Intelligent building skin; Solar Architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_226
id ecaade2018_226
authors Dounas, Theodoros and Lombardi, Davide
year 2018
title A CAD-Blockchain Integration Strategy for Distributed Validated Digital Design - Connecting the Blockchain
doi https://doi.org/10.52842/conf.ecaade.2018.1.223
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 223-230
summary We present a proof of concept implementation of an integration strategy for connecting CAD with Blockchain. We explain the components of most blockchains and the value they bring to the built environment ecosystem, the potential impact a complete integration might have and we demonstrate the first two of four levels of integration we have identified between CAD and blockchain technologies. For the purposes of the paper we use Rhino / Grasshopper and Ethereum as the two components of integration.
keywords Blockchain; Cryptography; CAD; BIM; distributed ledgers; cryptocoin; distributed CAD
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia11_170
id acadia11_170
authors El Sheikh, Mohamed; Gerber, David
year 2011
title Building Skin Intelligence: A parametric and algorithmic tool for daylighting performance design integration
doi https://doi.org/10.52842/conf.acadia.2011.170
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 170-177
summary The research presents a methodology and tool development which delineates a performance-based design integration to address the design, simulation, and proving of an intelligent building skin design and its impact on daylighting performance. Through the design of an algorithm and parametric process for integrating daylighting performance into the design phase an automated configuration evaluation is achieved. Specifically the tool enables design exploration of semi autonomous and fully autonomous configurations of an exterior building envelope louver system. The research situates itself in the field of intelligent building skins and adds to the existing solutions a validation of systems with interdependent louvers of varying tilt angles. The system is designed to respond to dynamic daylighting conditions and occupants’ preferences. Within the framework of this study, Grasshopper, Rhino, Galapagos and DIVA, are linked and coded into one integrated process, facilitating design optioneering with near real time feedback. The paper concludes with a description of the tool set’s extensibility, future incorporation of domain integration, and conflation of natural and physical system interaction and complexity.
keywords kinetic facades; parametric design; design integration; daylighting; performative design; design optioneering; realtime feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 48HOMELOGIN (you are user _anon_861250 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002