CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 649

_id caadria2010_029
id caadria2010_029
authors Baerlecken, Daniel; Martin Manegold, Judith Reitz and Arne Kuenstler
year 2010
title Integrative parametric form-finding processes
doi https://doi.org/10.52842/conf.caadria.2010.303
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 303-312
summary The recent developments in digital technologies and contemporary design tools are initiating new approaches of form-finding based on parametric development of multiple geometries with simultaneous consideration of various aspects. This paper focuses on the use of advanced parametric CAD systems and reformulated construction logics to enhance the potential and possibilities of form finding processes. This approach is exemplified through the “Greenhouse Trauttmansdorff project”. The project demonstrates a form finding approach which is based on defined parameters that not only fulfil aesthetic and functional aspects, but simultaneously take structural properties and the resulting sun shading behaviour into account. We will explore within this paper how – next to the functional and contextual building requirements – required illumination levels inside the greenhouse create a feedback loop between the structural system and its cladding system.
keywords parametric representations; digital technologies; digital fabrication; variable systems; load bearing construction
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_159
id acadia10_159
authors Bressani, Martin
year 2010
title Towards a Digital Theory of Affect
doi https://doi.org/10.52842/conf.acadia.2010.159
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 159-163
series ACADIA
type panel paper
email
last changed 2022/06/07 07:54

_id ecaade2010_166
id ecaade2010_166
authors Geyer, Philipp; Buchholz, Martin
year 2010
title System-Embedded Building Design and Modeling: Parametric systems modeling of buildings and their environment for performance-based and strategic design
doi https://doi.org/10.52842/conf.ecaade.2010.641
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.641-650
summary The paper proposes Parametric Systems Modeling (PSM) as a tool for building and city planning. The outlined method is based on the Systems Modeling Language (SysML) and is intended for design, dimensioning, and optimization of buildings and cities as systems. The approach exceeds the geometric approach, considers additional information from physics, technology, as well as biology, and provides a basis for multidisciplinary analyses and simulations. Its application aims at the exploration of innovative sustainable design solutions at system level. The proposal of an innovative buildinggreenhouse-city system serves to illustrate the approach. Features of this system are closed water cycles, renewable energy use, thermo-chemical energy storage and transport of energy for heating and cooling purposes on the base of desiccants, as well as recycling of CO2 , accumulation of biomass and related soil improvement.
wos WOS:000340629400069
keywords Parametric systems modeling; Systems design and engineering; Sustainable city system; City-integrated greenhouse
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2010_334
id sigradi2010_334
authors Martin, Kathi; KoSeoul Hyeong_Seok
year 2010
title The Imaginative Fashion Experience
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 334-337
summary Symptomatic of a good deal of our education, design, manufacturing, and product delivery mechanisms still grounded in 20th century traditions, much of the variety of expertise required for development of the most effective digital tools remains distinct and non - collaborative. This report describes an application utilized in multi - cultural fashion design and cultural heritage projects that may fundamentally change how we experience fashion and alter the way we manufacture clothes, conserve cultural artifacts, and educate the next leaders of multidisciplinary areas.
keywords virtual clothing, digital cultural heritage, interdisciplinary design collaboration, multi cultural design collaboration
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2010_018
id caadria2010_018
authors Schoch, M.; A. Praditsmanont and C. Prakasvudhisarn
year 2010
title Shaping building volumes through life cycle costs: a constraint programming approach for building volume optimisation
doi https://doi.org/10.52842/conf.caadria.2010.185
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 185-194
summary Due to a general freedom in the architectural design process, a wide range of possible alternatives exist; although building-volume designs must also continue to meet numerous, possibly conflicting design requirements originating from various related disciplines. This research addresses problems associated with missing quantitative design aids during the early design stages. It aims to provide designers with solutions that provide optimal cost-effectiveness. The demonstrated building-volume optimisation model minimises life cycle costs by determining optimal-volume dimensions, floor number, building orientation and ‘window / wall’ opening ratios while satisfying site and building code regulations and design constraints. Results indicate an optimal solution can be found within a practical timeframe. The proposed, novel approach to introduce cost objectives into building-volume design provides designers with a valuable decision support tool in a design domain that is known to be complex owing to multiple design criteria and constraint influences.
keywords Decision support; design optimisation; building volume design; life cycle costs and constraint-based design
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2010_069
id ecaade2010_069
authors Schoch, Martin; Praditsmanont, Apichat
year 2010
title Experimenting with Building Footprint Formation and Volume Optimization: A constraint programming approach for the optimization of buildingvolumes based on combinatorial rectangular footprint formations
doi https://doi.org/10.52842/conf.ecaade.2010.419
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.419-427
summary This paper is focusing on integrating footprint formations of buildingvolumes into an existing research of building-volume optimization (BVO). While earlier BVO experiments concentrated on single rectangular floor-area units per floor, the current BVO model allows footprint assemblies of combinatorial rectangular floor-area units per floor. The aspect of using these combinatorial floor assemblies is to provide more flexibility into the shaping of possible building-volumes and thus a more realistic approach to building-volume design. The investigation regarding combinatorial floor-area units concentrated on running time in reference to amount of allowable unit combinations per floor and the ability to provide close to optimal solutions through additional search runs. Results of the experiments documented a sharp increase of running time due to the additional allocation of floor-area units, while the BVO model was improved through the ability to generate combinatory footprint formation and offer close to optimal solutions.
wos WOS:000340629400045
keywords Decision support; Design optimization; Building-volume design; Life cycle costs; Constraint-based design
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_340
id acadia10_340
authors Tamke, Martin; Riiber, Jacob; Jungjohann, Hauke
year 2010
title Generated Lamella
doi https://doi.org/10.52842/conf.acadia.2010.340
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 340-347
summary The hierarchical organization of information is dominant in the setup of tectonic structures. In order to overcome the inherent limitations of these systems, self-organization is proposed as a means for future design. The paper exemplifies this within the research project “Lamel la Flock”. The research takes its point of departure in the structural abilities of the wooden Zollinger system: a traditional structural lamella system distributed as a woven pattern of interconnected beams. Where the original system has a very limited set of achievable geometries our research introduces an understanding of beam elements as autonomous entities with sensorymotor behaviour. By this means freeform structures can be achieved Through computation and methods of self-organization, the project investigates how to design and build with a system based on multiple and circular dependencies. Hereby the agent system negotiates between design intent, tectonic needs, and production. The project demonstrates how real-time interactive modeling can be hybridized with agent–based design strategies and how this environment can be linked to physical production. The use of knowledge embedded into the system as well as the flow of information between dynamic processes, Finite Element Calculation and machinery was key for linking the speculative with the physical.
keywords agent based systems, digital fabrication, aware models, wooden structures, industrial collaboration, 1:1 demonstrator
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia22_68
id acadia22_68
authors Al Othman, Sulaiman; Bechthold, Martin
year 2022
title Non-Linear Fabrication
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 68-75.
summary This paper describes an improved data collection methodology in the context of clay 3D printing that integrates structured light scanning tech- nology. The ultimate goal is to use this data for toolpath calibration during the next step of the research. The integrated process measures and then addresses the deflections caused by the successive build-up of clay layers that cause changes in stiffness across the lower printed layers, distortions and shifting of clay beads caused by extrusion pressure and nozzle maneuvering, and air gaps in the clay mix that affect the material flow rate.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id 22ec
authors Bechthold, Martin
year 2001
title Complex shapes in wood: Computer-aided design and manufacture of wood-sandwich roof shells
source Harvard University
summary Computer-Aided-Design, Engineering and Manufacturing (CAD/CAE/CAM) technology has changed the way consumer products, automobiles or airplanes are designed and made. The emerging applications for CAD/CAE/CAM technology in architecture, and the way this technology impacts how we design and construct the built environment, are yet unclear. This thesis investigates the relation between advanced digital design tools and the making of physical objects by focusing on an exemplary architectural element—wooden roof shells. The research objective is to expand the scope of architectural design through the application of CAD/CAE/CAM technology rather than to use this technology to streamline existing processes. The thesis develops a specific technical solution that allows the design and manufacture of new types of wooden roof shells. These are complexly shaped multifunctional construction elements that are manufactured off-site. Based on the close connection between digital design tools and the new Computer-Numerically-Controlled manufacturing process the author proposes a theoretical model of shared digital environments for collaborative design in architecture. The proposed manufacturing process treats wood as a modern composite material. Thin wood strips and foams combine into structural sandwich panels that can then be joined into a roof shell. The geometrically complex panels are generated by a combination of subtractive Computer-Numerically-Controlled machining processes and manual work. Infrastructure elements can be embedded into the sandwich build-up in order to enhance the functionality of the roof as a building envelope. Numerical tools are proposed that allow the determination of manufacturing-related parameters in the digital design environment. These inform the architectural and structural design in the early design phases. The digital collaborative design environment is based on a shared parametric solid model and an associated database. This collectively owned, feature-based design model is employed throughout the design and manufacturing process and constitutes the means of concurrent design coordination of all participants. The new manufacturing process for wood/foam sandwich shells is verified by designing and manufacturing prototypes. Design guidelines and a cost estimation are presented as the practical basis for architects and engineers to incorporate new types of roof shells into architectural projects.
keywords Architecture; Agriculture; Wood Technology; Design and Decorative Arts
series thesis:PhD
last changed 2003/02/12 22:37

_id acadia04_088
id acadia04_088
authors Bechthold, Martin
year 2004
title Digital Design and Fabrication of Surface Structures
doi https://doi.org/10.52842/conf.acadia.2004.088
source Fabrication: Examining the Digital Practice of Architecture [Proceedings of the 23rd Annual Conference of the Association for Computer Aidd Design in Architecture and the 2004 Conference of the AIA Technology in Architectural Practice Knowledge Community / ISBN 0-9696665-2-7] Cambridge (Ontario) 8-14 November, 2004, 88-99
summary This paper presents a study in digital design and manufacturing of shells, which are material-efficient systems that generate their load-bearing capacity through curvature. Their complex shapes are chal­lenging to build, and the few current shell projects employ the same shape repetitively in order to reduce the cost of concrete formwork. Can digital design and manufacturing technology make these systems suitable for the needs of the 21st century? The research developed new digitally-driven fabrication processes for Wood-Foam Sandwich Shells and Ferrocement-Concrete Sandwich Shells. These are partially pre-fabricated in order to allow for the application of Computer-Numerically Controlled (CNC) technology. Sandwich systems offer advantages for the digitally-enabled construction of shells, while at the same time improving their structural and thermal performance. The research defines design and manufacturing processes that reduce the need for repetition in order to save costs. Wood-Foam Sandwich shells are made by laminating wood-strips over a CNC-milled foam mold that eventually becomes the structural sandwich core. For Ferrocement-Concrete sandwich shells, a two-stage process is presented: pre-fabricated ferrocement panels become the permanent formwork for a cast-in-place concrete shell. The design and engineering process is facilitated through the use of parametric solid modeling envi­ronments. Modeling macros and integrated Finite-Element Analysis tools streamline the design process. Accuracy in fabrication is maintained by using CNC techniques for the majority of the shaping processes. The digital design and manufacturing parameters for each process are verified through design and fabrication studies that include prototypes, mockups and physical scale models.
keywords Shell, Pre-Fabrication, Prototype, Custom-Manufacturing, Simulation
series ACADIA
email
last changed 2022/06/07 07:54

_id ecaade2007_088
id ecaade2007_088
authors Bechthold, Martin
year 2007
title Teaching Technology: CAD/CAM, Parametric Design and Interactivity
doi https://doi.org/10.52842/conf.ecaade.2007.767
source Predicting the Future [25th eCAADe Conference Proceedings / ISBN 978-0-9541183-6-5] Frankfurt am Main (Germany) 26-29 September 2007, pp. 767-775
summary The paper discusses a project-based approach to technology teaching, and examines the case of the mobile information unit (MIU) for Harvard University and its art museums. A student competition was held to explore design alternatives for this unit. The winning entry proposed an interactive, pixilated fiber-optics display as well as touch screens. Parametric digital modeling was used in the design and design development of the scheme. Research included the study of structural alternatives, fabrication methods and the modes of interaction between users and the MIU.
keywords Computer-aided design and manufacturing, fabrication, simulation, prototype, fiber optics
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
doi https://doi.org/10.52842/conf.acadia.2019.576
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia22pr_148
id acadia22pr_148
authors Jung,, Francisco; Al Othman, Sulaiman; Im, Hyeonji Claire; García del Castillo y López, Jose Luis; Bechthold, Martin
year 2022
title Responsive Spatial Print Trajectory: 3D Printing of Clay Lattices with Self-Corrective Recalibration
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 148-153.
summary This project presents a novel method of spatially printing clay lattices by controlling fabrication parameters such as the printing head speed and the material extrusion rate following a 3D-choreographed toolpath. Spatial printing refers to the unrestricted movement of the printer nozzle in three axes (x, y, z) when extruding material, as opposed to the conventional 2-axis layer-by-layer deposition that is very slow and results in increased operational costs. This method—enhanced with an integrated industrial laser displacement sensor to collect deflection data subsequently used to calibrate the next layer toolpath geometry in real- time—works optimally with carbon-fiber reinforcements for increased tensile performance.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id ecaade2020_106
id ecaade2020_106
authors Mesa, Olga, Mhatre, Saurabh and Bechthold, Martin
year 2020
title Woven Compliant Composites
doi https://doi.org/10.52842/conf.ecaade.2020.1.079
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 79-88
summary Compliant composites are a new approach to composite systems that leverage the semi-rigid properties of composite woven fabrics to create kinetic compliant mechanisms. Simple fabrication and economic actuation principles are proposed to transform planar fabrics into three-dimensional configurations without using expensive molds, instead, relying on the millimeter-scale mechanical interactions of woven composite fabrics. The relation between fabric type, weave, matrix, laminations, and localized reinforcement was studied to achieve repeatable, durable, and functional components that displayed instant transformations. Woven compliant mechanisms were patterned to create adjustable surfaces actuated uniaxially and biaxially producing different degrees of porosity. The kinetic response is generated without the use of complicated mechanisms by relying on material properties and smart geometries. Our system expands work on kinetic surfaces with the advantage of the ease of actuation and fabrication. These surfaces can be used in architectural applications such as facades, shading mechanisms, and interior partitions where performative qualities are desirable.
keywords Compliant composites; Responsive systems; Material Intelligence; Smart geometries
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia17_392
id acadia17_392
authors Mesa, Olga; Stavric, Milena; Mhatre, Saurabh; Grinham, Jonathan; Norman, Sarah; Sayegh, Allen; Bechthold, Martin
year 2017
title Non-Linear Matters: Auxetic Surfaces
doi https://doi.org/10.52842/conf.acadia.2017.392
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 392- 403
summary Auxetic structures exhibiting non-linear buckling are a prevalent research topic in the material sciences due to the ability to tune their reversible actuation, porosity, and negative Poisson’s ratio. However, the research is limited to feature sizes at scales below 10 mm2, and to date, there are no available efficient design and prototyping methods for architectural designers. Our study develops design principles and workflow methods to transform standard materials into auxetic surfaces at an architectural scale. The auxetic behavior is accomplished through buckling and hinging by subtracting from a homogeneous material to create perforated patterns. The form of the perforations, including shape, scale, and spacing, determines the behavior of multiple compliant "hinges" generating novel patterns that include scaling and tweening transformations. An analytical method was introduced to generate hinge designs in four-fold symmetric structures that approximate non-linear buckling. The digital workflow integrates a parametric geometry model with non-linear finite element analysis (FEA) and physical prototypes to rapidly and accurately design and fabricate auxetic materials. A robotic 6-axis waterjet allowed for rapid production while maintaining needed tolerances. Fabrication methods allowed for spatially complex shaping, thus broadening the design scope of transformative auxetic material systems by including graphical and topographical biases. The work culminated in a large-scale fully actuated and digitally controlled installation. It was comprised of auxetic surfaces that displayed different degrees of porosity, contracting and expanding while actuated electromechanically. The results provide a promising application for the rapid design of non-linear auxetic materials at scales complimentary to architectural products.
keywords material and construction; CAM; prototyping; smart materials; auxetic
series ACADIA
email
last changed 2022/06/07 07:58

_id ijac201311404
id ijac201311404
authors Park, Daekwon; Martin Bechthold
year 2013
title Designing Biologically-inspired Smart Building Systems: Processes and Guidelines
source International Journal of Architectural Computing vol. 11 - no. 4, 437-464
summary This paper investigates design processes of and guidelines for biologically-inspired smart building systems (BISBS). Within the functional and performance requirements of building systems, biologically-inspired design is explored as the key approach and smart technology as the enabling technology. The Soft Modular Pneumatic System (SMoPS) is developed as a design experiment in order to verify the effectiveness of the BISBS design process. Similarly to how independent cells coordinate with each other to undergo certain tasks in multicellular systems, the SMoPS consists of autonomous modules that collectively achieve assigned functions. Within the soft body of each SMoPS module, sensor, actuation, and control components are integrated which enables the module to kinetically respond to and interact with its environment. The modular design and hierarchical assembly logic contribute to creating a flexible as well as robust building system. Throughout the design process, prototyping, simulation, and animation are utilized as an iterative and diversified development method.
series journal
last changed 2019/05/24 09:55

_id acadia18_250
id acadia18_250
authors Seibold, Zach; Grinham, Jonathan; Geletina, Olga; Ahanotu, Onyemaechi; Sayegh, Allen; Weaver, James; Bechthold, Martin
year 2018
title Fluid Equilibrium: Material Computation in Ferrofluidic Castings
doi https://doi.org/10.52842/conf.acadia.2018.250
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 250-259
summary We present a computationally-based manufacturing process that allows for variable pattern casting through the use of ferrofluid – a mixture of suspended magnetic nanoparticles in a carrier liquid. The capacity of ferrofluid to form intricate spike and labyrinthine packing structures from ferrohydrodynamic instabilities is well recognized in industry and popular science. In this paper we employ these instabilities as a mold for the direct casting of rigid materials with complex periodic features. Furthermore, using a bitmap-based computational workflow and an array of high-strength neodymium magnets with linear staging, we demonstrate the ability to program the macro-scale pattern formation by modulating the magnetic field density within a single cast. Using this approach, it is possible to program specific patterns in the resulting cast tiles at both the micro- and macro-scale and thus generate tiled arrays with predictable halftone-like image features. We demonstrate the efficacy of this approach for a variety of materials typically used in the architecture, engineering, and construction industries (AEC) including epoxys, ceramics, and cements.
keywords full paper, materials & adaptive systems, digital fabrication, digital materials, physics
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id acadia18_350
id acadia18_350
authors Seibold, Zach; Hinz, Kevin; García del Castillo y López, Jose Luis; Martínez Alonso, Nono; Mhatre, Saurabh; Bechthold, Martin
year 2018
title Ceramic Morphologies. Precision and control in paste-based additive manufacturing
doi https://doi.org/10.52842/conf.acadia.2018.350
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 350-357
summary Additive manufacturing techniques (AMT), commonly referred to as 3D printing, are emerging as a new area of study for the production of ceramic elements at the architectural scale. AMT may allow architectural designers to break from the established means of designing with ceramic elements – a process where designs are typically confined to a limited selection of building components produced by machine, die or fixture. In this paper, we report a method for the design and additive manufacture of customizable ceramic masonry elements via paste-based extrusion. A novel digital workflow allowed for precise control of part design, and generated manufacturing parameters such as toolpath geometry and machine code. 3D scans of a selection of elements provide an initial analysis of print fidelity. We discuss the current constraints of this process and identify several on-going research trajectories generated because of this research.
keywords work in progress, fabrication & robotics, materials/adaptive systems, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id sigradi2020_326
id sigradi2020_326
authors Ugarte-Urzúa, Juan Pablo; Mhatre, Saurabh; Bechthold, Martin; Norman, Sarah
year 2020
title Extruded Tessellations: A novel structural ceramic system at the intersection of industrial ceramic extrusion and CNC fabrication
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 326-333
summary This research explores the customization potential of ceramic extrusion by means of integrating CNC fabrication tools into current industrial ceramic extrusion lines. In order to support this approach, we designed and built two wall prototypes made of 700 extruded ceramic pieces. The pieces were produced using a single extrusion die and were cut to custom lengths and angles using CNC disk cutters to produce a total of 38 unique pieces. We introduce the motivation behind our work, present a three-stage design workflow for the design of this type of ceramic system, and show our built prototype.
keywords Ceramic extrusio, CNC customization, Design workflow, Prototype, Tessellation
series SIGraDi
email
last changed 2021/07/16 11:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_141839 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002