CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 485

_id acadia10_174
id acadia10_174
authors Sabin, Jenny E.
year 2010
title Digital Ceramics: Crafts-based Media for Novel Material Expression & Information Mediation at the Architectural Scale
doi https://doi.org/10.52842/conf.acadia.2010.174
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 174-182
summary Design research for digital ceramics commenced with the project, “Ground Substance” an experimental form produced in the Sabin+Jones LabStudio. The design team was led by Jenny E. Sabin and Andrew Lucia. Dr. Peter Lloyd Jones and Agne Taraseviciuete led the scientific team. Our design critic was Annette Fierro. The project was inspired by original biological research conducted at the Jones Laboratory, supervised by Dr. Peter Lloyd Jones and led by MD-PhD student Agne Taraseviciuete at the Institute for Medicine and Engineering, UPenn. This research was supported generously by the CMREF. Design and production of “Ground Substance” was supported generously by a UPenn Research and Development Grant awarded to the Sabin+Jones LabStudio.
series ACADIA
type panel paper
email
last changed 2022/06/07 07:58

_id ecaade2010_192
id ecaade2010_192
authors Hansmeyer, Michael
year 2010
title From Mesh to Ornament: Subdivision as a generative system
doi https://doi.org/10.52842/conf.ecaade.2010.285
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.285-293
summary This paper explores the use of subdivision algorithms for the production of three-dimensional ornament. In a first step, this paper presents modifications to the Catmull Clark and Doo Sabin processes’ weighting schemes. In a second step, it proposes how these modified processes can be applied specifically to the generation of ornament. It presents methods for specifying weights using parameters both intrinsic and extrinsic to the mesh. Strategies for working with both very uniform and more differentiated input meshes are considered.
wos WOS:000340629400030
keywords Subdivision; Ornament; Generative system
series eCAADe
email
last changed 2022/06/07 07:50

_id sigradi2010_434
id sigradi2010_434
authors Ramírez, Camacho Ángela; Robayo Gómez Jenny; Sotaquirá Gutiérrez Ricardo
year 2010
title Interfaz táctil que mejora la inmersión en un juego de simulación educativo [Touch interface which improves immersion in an educational simulation game]
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 434-437
summary A major change in the way we interact with software and technology is taking place; it is both a technological and a conceptual change. This paper presents the design of a new touch - screen interface for a previously - created educational simulation game. This research shows that interactive designs and touch - screens improve the immersion level and learning of people using the game.
keywords educational simulation game, interaction design, touch - screen, human computer interaction, system dynamics
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia18_276
id acadia18_276
authors Bilotti, Jeremy; Norman, Bennett; Rosenwasser, David; Leo Liu, Jingyang; Sabin, Jenny
year 2018
title Robosense 2.0. Robotic sensing and architectural ceramic fabrication
doi https://doi.org/10.52842/conf.acadia.2018.276
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 276-285
summary Robosense 2.0: Robotic Sensing and Architectural Ceramic Fabrication demonstrates a generative design process based on collaboration between designers, robotic tools, advanced software, and nuanced material behavior. The project employs fabrication tools which are typically used in highly precise and predetermined applications, but uniquely thematizes the unpredictable aspects of these processes as applied to architectural component design. By integrating responsive sensing systems, this paper demonstrates real-time feedback loops which consider the spontaneous agency and intuition of the architect (or craftsperson) rather than the execution of static or predetermined designs. This paper includes new developments in robotics software for architectural design applications, ceramic-deposition 3D printing, sensing systems, materially-driven pattern design, and techniques with roots in the arts and crafts. Considering the increasing accessibility and advancement of 3D printing and robotic technologies, this project seeks to challenge the erasure of materiality: when mistakes or accidents caused by inconsistencies in natural material are avoided or intentionally hidden. Instead, the incorporation of material and user-input data yields designs which are imbued with more nuanced traces of making. This paper suggests the potential for architects and craftspeople to maintain a more direct and active relationship with the production of their designs.
keywords full paper, fabrication & robotics, robotic production, digital fabrication, digital craft
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia19_222
id acadia19_222
authors Birol, Eda Begum; Lu, Yao; Sekkin, Ege; Johnson, Colby; Moy, David; Islam, Yaseen; Sabin, Jenny
year 2019
title POLYBRICK 2.0
doi https://doi.org/10.52842/conf.acadia.2019.222
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 222-233
summary Natural load bearing structures are characterized by aspects of specialized morphology, lightweight, adaptability, and a regenerative life cycle. PolyBrick 2.0 aims to learn from and apply these characteristics in the pursuit of revitalizing ceramic load bearing structures. For this, algorithmic design processes are employed, whose physical manifestations are realized through available clay/porcelain additive manufacturing technologies (AMTs). By integrating specialized expertise across disciplines of architecture, engineering, and material science, our team proposes an algorithmic toolset to generate PolyBrick geometries that can be applied to various architectural typologies. Additionally, comparative frameworks for digital and physical performance analyses are outlined. Responding to increasing urgencies of material efficiency and environmental sensibility, this project strives to provide for designers a toolset for environmentally responsive, case-specific design, characterized by the embedded control qualities derived from the bone and its adaptability to specific loading conditions. Various approaches to brick tessellation and assembly are proposed and architectural possibilities are presented. As an outcome of this research, PolyBrick 2.0 is effectively established as a Grasshopper plug-in, “PolyBrick” to be further explored by designers.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia23_v2_494
id acadia23_v2_494
authors Feng, Shuo; Kalantari, Saleh; Sabin, Jenny
year 2023
title Emotive Room: A BCI Interactive Architectural Interface
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 494-507.
summary The features of the built environment can affect many aspects of human health and well- being, including emotional and mental health. This paper presents a novel approach to applying emerging, interactive technologies in the design of interior surfaces with the goal of assisting building users in the modulation of their emotional states. Using a biofeed- back approach based on real-time neurological data—in other words, a brain-computer interface—the Emotive Room project responds to users' stress levels with changes in the color and form of the interior environment. These changes are designed to help promote calmness when users are stressed, and to promote higher energy levels when users are calm. The paper describes the methods that were used to create the Emotive Room environment, the scientific grounding for our approach, and the accessible fabrications methods that were employed. Potential applications and future research paths related to the project are discussed.
series ACADIA
type paper
email
last changed 2024/12/20 09:13

_id acadia21_380
id acadia21_380
authors Huang, Zhenxiang; Chiang, Yu-Chou; Sabin, Jenny E.
year 2021
title Automating Bi-Stable Auxetic Patterns for Polyhedral Surface
doi https://doi.org/10.52842/conf.acadia.2021.380
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 380-391.
summary Bi-stable auxetic structures, a novel class of architected material systems that can transform bi-axially between two stable states, offers unique research interest for designing a deployable stable structural system. The switching behavior we discuss here relies on rotations around skewed hinges at vertex rotating connectors. Different arrangements of skewing hinges lead to different local curvatures.

This paper proposes a computational approach to design the self-interlocking pattern of a bi-stable auxetic system that can be switched between flat and desired curved states. We build an algorithm which takes a target synclastic polyhedral surface as input to generate the geometrical pattern with skewing hinges. Finally, we materialized prototypes to validate our proposed structures and to exhibit potential applications.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id lasg_whitepapers_2016_262
id lasg_whitepapers_2016_262
authors Jenny E. Sabin, Martin Miller, Daniel Cellucci & Andrew Moorman
year 2016
title ColorFolds: eSkin + Kirigami - From Cell Contractility to Sensing Materials to Adaptive Foldable Architecture
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada pp. 262 - 275
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
email
last changed 2019/07/29 14:02

_id caadria2020_257
id caadria2020_257
authors Lu, Yao, Birol, Eda Begum, Johnson, Colby, Hernandez, Christopher and Sabin, Jenny
year 2020
title A Method for Load-responsive Inhomogeneity and Anisotropy in 3D Lattice Generation Based on Ellipsoid Packing
doi https://doi.org/10.52842/conf.caadria.2020.1.395
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 395-404
summary 3D lattice structures are gaining widespread application in multiple design fields. While the number of projects that utilize load-responsive inhomogeneous and anisotropic 3D lattices in design applications increase, accessible and effective algorithmic generation methodologies remain lacking. This paper addresses this gap by introducing a novel computational method for controlled load-responsive inhomogeneity and anisotropy in 3D lattice generation. The presented methods employ a responsive Ellipsoid Packing algorithm informed by the global tensor field of the packing geometry, followed by a Kissing Ellipsoids algorithm to generate the lattice. Load specific anisotropy and inhomogeneity in the ellipsoid packing process is achieved in response to the magnitude and directionality values of the global tensor field and specialized responsive lattices are easily generated. The proposed Ellipsoid Packing workflow is compared to various common lattice generation algorithms. Results show improvement in mechanical performance.
keywords 3D lattice; ellipsoid packing; bio-inspired; algorithmic design; ceramic brick
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia16_174
id acadia16_174
authors Moorman, Andrew; Liu, Jingyang; Sabin, Jenny E.
year 2016
title RoboSense: Context-Dependent Robotic Design Protocols and Tools
doi https://doi.org/10.52842/conf.acadia.2016.174
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 174-183
summary While nonlinear concepts are widely applied in analysis and generative design in architecture, they have not yet convincingly translated into the material realm of fabrication and construction. As the gap between digital design model, shop drawing, and fabricated result continues to diminish, we seek to learn from fabrication models and natural systems that do not separate code, geometry, pattern, material compliance, communication, and form, but rather operate within dynamic loops of feedback, reciprocity, and generative fabrication. Three distinct, but connected problems: 1) Robotic ink drawing; 2) Robotic wine pouring and object detection; and 3) Dynamically Adjusted Extrusion; were addressed to develop a toolkit including software, custom digital design tools, and hardware for robotic fabrication and user interaction in cyber-physical contexts. Our primary aim is to simplify and consolidate the multiple platforms necessary to construct feedback networks for robotic fabrication into a central and intuitive programming environment for both the advanced to novice user. Our experimentation in prototyping feedback networks for use with robotics in design practice suggests that the application of this knowledge often follows a remarkably consistent profile. By exploiting these redundancies, we developed a support toolkit of data structures and routines that provide simple integrated software for the user-friendly programming of commonly used roles and functionalities in dynamic robotic fabrication, thus promoting a methodology of feedback-oriented design processes.
keywords online programming, cyber-physical systems, computational design, robotic fabrication, human-robot interaction
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id acadia20_372
id acadia20_372
authors Nelson, Cameron; Sabin, Jenny
year 2020
title Shape-Programmed Self-Assembly of Bead Structures
doi https://doi.org/10.52842/conf.acadia.2020.1.372
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 372-381.
summary This paper demonstrates the potential of a robust, low-cost approach to programmable matter using beads and string to achieve complex shapes with novel self-organizing and deformational properties. The method is inspired by the observation that beads forced together along a string will become constrained until they spontaneously rigidify. This behavior is easily observed using any household string and flat-faced beads and recalls the mechanism behind classic crafts such as push puppets. However, specific examples of architectural applications are lacking. We analyze how this phenomenon occurs through static force analyses, physical tests, and simulation, using a rigid body physics engine to validate digital prototypes. We develop a method of designing custom bead geometries able to be produced via generic 3D-printing technology, as well as a computational path-planning toolkit for designing ways of threading beads together. We demonstrate how these custom bead geometries and threading paths influence the acquired structure and its assembly. Finally, we propose a means of scaling up this phenomenon, suggesting potential applications in deployable architecture, mortarless assembly of nonfunicular masonry, and responsive architectural systems.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia17_502
id acadia17_502
authors Rosenwasser, David; Mantell, Sonya; Sabin, Jenny
year 2017
title Clay Non-Wovens: Robotic Fabrication and Digital Ceramics
doi https://doi.org/10.52842/conf.acadia.2017.502
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 502- 511
summary Clay Non-Wovens develops a new approach for robotic fabrication, applying traditional craft methods and materials to a fundamentally technical and precise fabrication methodology. This paper includes new explorations in robotic fabrication, additive manufacturing, complex patterning, and techniques bound in the arts and crafts. Clay Non-Wovens seeks to develop a system of porous cladding panels that negotiate circumstances of natural daylighting through parameters dealing with textile (woven and non-woven) patterning and line typologies. While additive manufacturing has been built predominantly on the basis of extrusion, technological developments in the field of 3D printing seldom acknowledge the bead or line of such extrusions as more than a nuisance. Blurring of recognizable layers is often seen as progress, but it does away with visible traces of a fabrication process. Historically, however, construction methods in architecture and the building industry have celebrated traces of making ranging from stone cutting to log construction. With growing interest in digital craft within the fields of architecture and design, we seek to reconcile our relationship with the extruded bead and reinterpret it as a fiber and three-dimensional drawing tool. The traditional clay coil is to be reconsidered as a structural fiber rather than a tool for solid construction. Building upon this body of robotically fabricated clay structures required the development of three distinct but connected techniques: 1. construction of a simple end effector for extrusion; 2. development of a clay body and; 3. using computational design tools to develop formwork and toolpath geometries.
keywords design methods; information processing; fabrication; digital craft; manual craft; prototyping
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia23_v3_233
id acadia23_v3_233
authors Sabin, Jenny ; Bogosian, Biayna; Poole, Sabina; Escalante, Cesar; Kron, Zach
year 2023
title Inaugural Autodesk ACADIA BIPOC Student Scholarship and Workshop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary People of Color (BIPOC) at ACADIA conferences and within our broader community. Together, we aim to pave the way for aspiring BIPOC computational designers, creating a vibrant pathway to success. Several years ago, ACADIA partnered with the National Organization of Minority Architects (NOMA) to create engagement opportunities for the communities. Thanks to the efforts of past Presidents Jason Kelly Johnson, Kathy Velikov, and Jenny Sabin, current President Shelby Doyle, ACADIA Board members June Grant and Biayna Bogosian, the ACADIA Diversity Committee, and generous support from Autodesk, ACADIA and Autodesk have supported grants for NOMA students and professionals to attend the annual ACADIA conference and workshops.
series ACADIA
email
last changed 2024/04/17 14:00

_id acadia09_52
id acadia09_52
authors Sabin, Jenny E
year 2009
title Code, Context, and Perception: Matrix Architecture and the Architect Weaver
doi https://doi.org/10.52842/conf.acadia.2009.052
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 52-57
summary Recent technological leaps in data production and computation have afforded both architects and scientists an extraordinary ability to generate information and complex form. Rather than deal in the composition of wholes, architects specializing in generative and parametric design strategies—more formally known as design computation—have adopted a bottom-up approach to the negotiation of constraints within the design process. This renewed interest in complexity has offered alternative methods for investigating the interrelationships of parts to their wholes, and emergent self-organized pattern systems at multiple scales and applications. The contemporary architecture avant-garde has provided many examples that showcase the proven power such digital tools afford the designer, inspiring and leading to the generation of beautiful form. But what are our next steps in addressing complexity? How should architects with expertise in design computation situate themselves in larger design dialogues concerning pressing topics such as those concerning our environment? Biology provides useful systems-based models for architects to study to understand how context specifies form, function, and structure.
keywords Design systems, biology, complexity, self-organized systems
series ACADIA
type Normal paper
last changed 2022/06/07 07:56

_id acadia12_259
id acadia12_259
authors Sabin, Jenny E.
year 2012
title The Greenhouse & Cabinet of Future Fossils: Interfacing Nature in the Built Environment
doi https://doi.org/10.52842/conf.acadia.2012.259
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 259-268
summary The Greenhouse and Cabinet of Future Fossils was commissioned by the American Philosophical Society Museum, funded by Heritage Philadelphia Program, a program of The Pew Center for Arts & Heritage. The Greenhouse and Cabinet of Future Fossils attempts to gather, digest, and disseminate information about nature while also incorporating cutting-edge design and fabrication techniques to ultimately produce a greenhouse of the future. The pavilion structure is populated with cold frame modules and futuristic ceramic and 3D printed curiosities, prefabricated and assembled in the Jefferson Garden, Philadelphia. Taking inspiration from the artifacts in the exhibition, Of Elephants and Roses: Encounters with French Natural History, 1790–1830, the greenhouse revisits 19th-century thematic issues related to nature, culture, and the city to offer new interpretations of greenhouse architecture as urban hybrid ecosystems whose nonstandard form features new material and fabrication logics that inspire a shift away from a technical approach to sustainable architecture to one rooted in design and the built environment. The pavilion mobilizes concepts of event as the public is invited to actively participate in the planting of the cold frames, thus contributing to the actual secondary structure of the greenhouse, and then disassembling the structure at the end of the installation period and disseminating the planted materials. As a conceptual and provocative backdrop to this project, references are made to important contributions recently made by a small group of accomplished scientists, architects, and researchers at a university symposium whose central theme was to discuss next steps for sustaining sustainability.
keywords ecology , emerging technologies , alternative materials , greenhouse architecture , digital fabrication , designbuild , sustainability
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
doi https://doi.org/10.52842/conf.acadia.2013.347
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id acadia22pr_106
id acadia22pr_106
authors Sabin, Jenny E.; Paraszczak, Michael; Pranger, Dillon; Hilla, John
year 2022
title Convergence: Advancing Robotic Wire Arc Additive Manufacturing to the Architectural Scale in an Urban Context
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 106-111.
summary Convergence celebrates the thriving, vibrant, and rich heritage of excellence of the University of Nebraska Medical Center through materialized concepts that embed change, transformation, and contemplation. The project incorporates the most advanced methods and innovations in digital and robotic fabrication with the integration of timeless and contextually sensitive materials that interact with the sun and human perception. The project features stainless steel wire arc additive manufacturing through robotic 3D printing, nonstandard CNC machined polycarbonate panels laminated with responsive wavelength-dependent dichroic film, and stainless-steel stiffener rings. Sited in the new Northwall Plaza, Convergence serves as the outdoor threshold to the buildings and the campus welcome center facilitating an ideal setting for conversations, fellowship, and engagement by students and faculty.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia08_054
id acadia08_054
authors Sabin, Jenny E.; Peter Lloyd Jones
year 2008
title Nonlinear Systems Biology and Design: Surface Design
doi https://doi.org/10.52842/conf.acadia.2008.054
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 54-65
summary The intent of this paper is to jointly investigate fundamental processes in living systems, their potential application in the novel design of responsive surfaces and spatial structures, and their applicability in biomedicine. Through the investigation of organotypic biological models designed to recapitulate breast tissue homeostasis and cancer, parallel models work to unfold the parametric logic of these biological and responsive membrane and scaffold structures, thereby revealing their deep interior logics. The result is an abstract surface architecture capable of responding dynamically to both environment (context) and to deeper interior programmed systems.
keywords Algorithm; Biology; Material; Morphogenesis; Nonlinear
series ACADIA
last changed 2022/06/07 07:56

_id lasg_whitepapers_2019_291
id lasg_whitepapers_2019_291
authors Sabin, Jenny
year 2019
title Lumen
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.291 - 318
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for [Lumen], winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, [Lumen] employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id acadia18_444
id acadia18_444
authors Sabin, Jenny; Pranger, Dillon; Binkley, Clayton; Strobel, Kristen; Liu, Jingyang (Leo)
year 2018
title Lumen
doi https://doi.org/10.52842/conf.acadia.2018.444
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 444-455
summary This paper documents the computational design methods, digital fabrication strategies, and generative design process for Lumen, winner of MoMA & MoMA PS1’s 2017 Young Architects Program. The project was installed in the courtyard at MoMA PS1 in Long Island City, New York, during the summer of 2017. Two lightweight 3D digitally knitted fabric canopy structures composed of responsive tubular and cellular components employ recycled textiles, photo-luminescent and solar active yarns that absorb and store UV energy, change color, and emit light. This environment offers spaces of respite, exchange, and engagement as a 150 x 75-foot misting system responds to visitors’ proximity, activating fabric stalactites that produce a refreshing micro-climate. Families of robotically prototyped and woven recycled spool chairs provide seating throughout the courtyard. The canopies are digitally fabricated with over 1,000,000 yards of high tech responsive yarn and are supported by three 40+ foot tensegrity towers and the surrounding matrix of courtyard walls. Material responses to sunlight as well as physical participation are integral parts of our exploratory approach to the 2017 YAP brief. The project is mathematically generated through form-finding simulations informed by the sun, site, materials, program, and the material morphology of knitted cellular components. Resisting a biomimetic approach, Lumen employs an analogic design process where complex material behavior and processes are integrated with personal engagement and diverse programs. The comprehensive installation was designed by Jenny Sabin Studio and fabricated by Shima Seiki WHOLEGARMENT, Jacobsson Carruthers, and Dazian with structural engineering by Arup and lighting by Focus Lighting.
keywords full paper, materials & adaptive systems, digital fabrication, flexible structures, performance + simulation
series ACADIA
type paper
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_324846 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002