CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 8428

_id 819a
authors Brassel, Kurt E. and Fegeas, Robin
year 1979
title An Algorithm for Shading of Regions on Vector Display Devices
source SIGGRAPH '79 Conference Proceedings. August, 1979. vol. 13 ; no. 2: pp. 126- 133 : ill. includes bibliography
summary The display of shaded polygons by line, cross-hatch, and dot patterns on vector devices is a task frequently used in computer graphics and computer cartography. In applications such as the production of shaded maps polygon shading turns out to be critical with respect to time requirements, and the development of efficient algorithms is of importance. Given an arbitrary polygon in the plane without self-crossing edges (simply-connected polygon), the task at hand is to shade this polygon with one or two sets of parallel lines where for each set a shading angle and a line distance are given. The basic concept of this new algorithm is to decompose the polygon into a set of mutually exclusive trapezoids (in special cases triangles) where the parallel edges of the trioxides are parallel to the desired shading lines. These trapezoids and triangles are then shaded in a fast procedure. In its present form the algorithm handles regions with up to 300 islands. Possible extensions include the construction of dash and cross patterns
keywords algorithms, polygons, software, computer graphics, shading, GIS, mapping, drafting, information
series CADline
last changed 2003/06/02 13:58

_id acadia16_164
id acadia16_164
authors Braumann, Johannes; Stumm, Sven; Brell-Cokcan, Sigrid
year 2016
title Towards New Robotic Design Tools: Using Collaborative Robots within the Creative Industry
doi https://doi.org/10.52842/conf.acadia.2016.164
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 164-173
summary This research documents our initial experiences of using a new type of collaborative, industrial robot in the area of architecture, design, and construction. The KUKA LBR-iiwa differs from common robotic configurations in that it uses seven axes with integrated force-torque sensors and can be programmed in the Java programming language. Its force-sensitivity makes it safe to interact with, but also enables entirely new applications that use hand-guiding and utilize the force-sensors to compensate for high tolerances on building sites, similar to how we manually approach assembly tasks. Especially for the creative industry, the Java programming opens up completely new applications that would have previously required complex bus systems or industrial data interfaces. We will present a series of realized projects that showcase some of the potential of this new type of collaborative, safe robot, and discuss the advantages and limitations of the robotic system.
keywords material tolerances, individualized production, iiwa, assembly, visual robot programming, collaborative robots
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id 0277
authors Brusilovsky, P.
year 2001
title Adaptive hypermedia
source User modelling and User-Adapted Interaction, volume 11, pp. 87-110, Kluwer
summary Hypertext/hypermedia systems and user-model-based adaptive systems in the areas of learning and information retrieval have for a long time been considered as two mutually exclusive approaches to information access. Adaptive systems tailor information to the user and may guide the user in the information space to present the most relevant material, taking into account a model of the user's goals, interests and preferences. Hypermedia systems, on the other hand, are `user neutral': they provide the user with the tools and the freedom to explore an information space by browsing through a complex network of information nodes. Adaptive hypertext and hypermedia systems attempt to bridge the gap between these two approaches. Adaptation of hypermedia systems to each individual user is increasingly needed. With the growing size, complexity and heterogeneity of current hypermedia systems, such as the World Wide Web, it becomes virtually impossible to impose guidelines on authors concerning the overall organization of hypermedia information. The networks therefore become so complex and unstructured that the existing navigational tools are no longer powerful enough to provide orientation on where to search for the needed information. It is also not possible to identify appropriate pre-defined paths or subnets for users with certain goals and knowledge backgrounds since the user community of hypermedia systems is usually quite inhomogeneous. This is particularly true for Web-based applications which are expected to be used by a much greater variety of users than any earlier standalone application. A possible remedy for the negative effects of the traditional `one-size-fits-all' approach in the development of hypermedia systems is to equip them with the ability to adapt to the needs of their individual users. A possible way of achieving adaptivity is by modeling the users and tailoring the system's interactions to their goals, tasks and interests. In this sense, the notion of adaptive hypertext/hypermedia comes naturally to denote a hypertext or hypermedia system which reflects some features of the user and/or characteristics of his system usage in a user model, and utilizes this model in order to adapt various behavioral aspects of the system to the user. This book is the first comprehensive publication on adaptive hypertext and hypermedia. It is oriented towards researchers and practitioners in the fields of hypertext and hypermedia, information systems, andpersonalized systems. It is also an important resource for the numerous developers of Web-based applications. The design decisions, adaptation methods, and experience presented in this book are a unique source of ideas and techniques for developing more usable and more intelligent Web-based systems suitable for a great variety of users. The practitioners will find it important that many of the adaptation techniques presented in this book have proved to be efficient and are ready to be used in various applications.
series other
email
last changed 2003/04/23 15:14

_id 0471
authors Bruton, B.
year 1998
title Grammars and Pedagogy - Towards new Media Art and Design Education Strategies
doi https://doi.org/10.52842/conf.caadria.1998.385
source CAADRIA ‘98 [Proceedings of The Third Conference on Computer Aided Architectural Design Research in Asia / ISBN 4-907662-009] Osaka (Japan) 22-24 April 1998, pp. 385-394
summary The impact of computational grammatical design on pedagogy has received little attention in art education due to the dominant modes of traditional approaches to art and design education. This paper explores the pedagogical implications of grammatical strategies using computers for judgements of design within an art educational setting. Grammatical strategies are studied for their effect on the judgements of novice artists in a new media educational context. It is argued that concepts of grammar and views of contingency are used in a variety of senses in the conception and form making of artists; that finding methods for discussing and utilising complex visual information is aided by grammatical formalisation; that these strategies are evidently effective at both early and mature stages of the realisation of a project. The research explores the relation between computer and art on three levels in which grammar is used: as a sense of grammar, as a computational paradigm and as a description of a kind of computer program. Grammatical formalism is apparent in two dimensional linear and non-linear animations using Photoshop, Premiere and Director, and in solid modelling programs such as Extreme 3D, Form Z, Strata Studio Pro, 3D Studio Max and SoftImage. Web site construction also impacts on the judgements of 2D and 3D design. Computational grammatical programs generate forms that reflect alternative understandings of art and design. Art practise is defined in terms of developing consistent and appropriate design language for the contingency at hand. Form making using grammatical tools, both recursive and array types, is discussed in terms of their applicability and educative value. Reference is made to formal qualities for critique and strategic capability of alternative pedagogy for generation of forms. Examples provided show how simple rule sets develop into complex derivational sequences that challenge traditional strategies for computer imaging. The paper demonstrates the value of a sense of grammars for novice art and design practitioners by using first hand examples of experimental work at the South Australian School of Art, University of South Australia. For novice artists and designers, grammars in conjunction with reflective practice is offered as a useful mind set that supports an interest in actively defining a new kind of art. Illustrations provided show the utility of a contingent sense of grammar for pedagogy and highlights the significant role of grammar in pedagogy.
keywords Grammar, Pedagogy, Computer, Art, Design
series CAADRIA
email
more http://www.caadria.org
last changed 2022/06/07 07:54

_id 07c5
authors Burry, Mark
year 1998
title Handcraft and Machine Metaphysics
doi https://doi.org/10.52842/conf.ecaade.1998.041
source Computers in Design Studio Teaching [EAAE/eCAADe International Workshop Proceedings / ISBN 09523687-7-3] Leuven (Belgium) 13-14 November 1998, pp. 41-50
summary As the cost of 3D digitisers drops and PC price performance rises, opportunities for hand - computer co-operation improve. Architectural form may now be experimentally moulded or carved using manual techniques in close association with the computer. At any stage the model can be mechanically digitised and translated to a computer database for explorations that go beyond simple physical manipulation. In the virtual environment, the resulting forms can be rationalised using an ordering geometry or further de-rationalised. This potential for debasing intuitive, sensually haptic and responsive handwork through its translation into numerically cogent formulations is risky business. But it may also bring new and unlikely rewards. This paper considers the implications and aesthetics of negotiations between handcraft and consecutive or synchronous computer digitalisation of intentions. Two situations will be discussed and compared. The first is the nature of computer modelling and its representation per se, and the second is the relevance of using handcraft as a sponsor for computer-based manipulation and morphological experimenting.
series eCAADe
email
more http://www.eaae.be/
last changed 2022/06/07 07:54

_id caadria2019_491
id caadria2019_491
authors Cai, Chenyi, Tang, Peng and Li, Biao
year 2019
title Intelligent Generation of Architectural layout inheriting spatial features of Chinese Garden Based on Prototype and Multi-agent System - A Case Study on Lotus Teahouse in Yixing
doi https://doi.org/10.52842/conf.caadria.2019.1.291
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 291-300
summary This study presents an approach for the intelligent generation of architectural layout, in which partial space inherits Chinese garden spatial features. The approach combines spatial prototype analysis and evolutionary optimization process. On one hand, from the perspective of shape grammar, this paper both analyzes and abstracts the spatial prototype that describes the spatial characteristics of Chinese gardens, including the organization system of architecture and landscape, with the spatial sequences along the tourism orientation. On the other hand, taking the design task of Lotus teahouse as an example, a typical spatial prototype is selected to develop the generative intelligent experiment to achieve the architectural layout, in which the spatial prototype is inherited. Through rule-making and parameter adjustment, the spatial prototype will eventually be transformed into a computational model based on the multi-agent system. Hence, the experiment of intelligent generation of architectural layout is carried out under the influence of the function, form and environmental factors; and a three-dimensional conceptual model that inherits the Chinese garden spatial prototype is obtained ultimately.
keywords Chinese garden; Architectural layout; Spatial prototype; Multi-agent system; Intelligent generation
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2024_284
id caadria2024_284
authors Calixto, Victor and Croffi, Juliana
year 2024
title Back to Black Boxes? An Urgent Call for Discussing the Impacts of the Emergent AI-Driven Tools in the Architecture Design Education
doi https://doi.org/10.52842/conf.caadria.2024.3.039
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 3, pp. 39–48
summary In recent years, the advances in data science and Artificial Intelligence (AI) are disrupting all sectors, impacting the industry and academic fields. In the AEC sector, there have been a rising number of user-friendly "computational design services" generative and parameterised solutions driven by AI engines. However, if in one hand these services provide rapid solutions with minimal cognitive load, on the other hand, they obscure logical processes from computational design thinking, transforming them into black boxes and limiting the designer on making use of technology to create novel solutions. To overcome these challenges, the teaching of computational design thinking should be integrated in architecture education on undergraduate and master programs. This study conducts a critical literature review and proposes a framework to be implemented in architecture education, discussing the complexity involved in the learning process. The framework provides a layered approach that unfold the levels of abstraction of the nested black boxes of computational design and AI in an educational context.
keywords Computational Design Thinking, Architecture Education, Black Box, AI
series CAADRIA
email
last changed 2024/11/17 22:05

_id ascaad2009_andrea_cammarata
id ascaad2009_andrea_cammarata
authors Cammarata, Andrea
year 2009
title Rebuilding Architecture: An analysis and critical investigation practice
source Digitizing Architecture: Formalization and Content [4th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2009) / ISBN 978-99901-06-77-0], Manama (Kingdom of Bahrain), 11-12 May 2009, pp. 121-134
summary The Cooperative Design Environment Laboratory (CoDE Lab) is carrying out a research with students, trainees and seniors who have previously participated to CAAD-assisted design courses. These courses were developed with the aim of making participants independent from the pre-analytical phase project to the renderings of the final artifact. The programs that have been used so far are Autodesk Revit, Graphisoft Archicad and Nemetschek Allplan.The teaching workgroup has always believed that analyzing, deconstructing and reconstructing the architecture teaches much in terms of understanding. If the process is done correctly, it entirely re-traces the creative dynamics developed by the original designer. Subsequently, the educational practice is to choose a notable architectural work, designed and/or created by a Master of architecture, and to reproduce it in all details: aesthetical-formal, morphological, technological, structural, modular, etc. The final result is an archive of well-developed reconstructed models of great specific interest. The students on the other hand thoroughly learn how to control the tools and all BIM planning procedures.
series ASCAAD
email
last changed 2009/06/30 08:12

_id ee50
authors Campioli, Andrea and Talamo, Cinzia
year 1994
title IPERTEC: Hypertext Information System for Dry-assembled Building Elements
doi https://doi.org/10.52842/conf.ecaade.1994.x.b3p
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 239
summary The experience presented concerns the study of advanced information tools for design disciplines teaching. The objectives pursued are: on one hand self-teaching according to methods that go beyond traditional technical manuals and specialized texts and that give a systemic view of the strict connections between technological culture and design poetics; on the other hand assistance during design exercises as far as references assumption and deep analysis of technical and architectural topics are concerned. The result of the research is the information system Ipertec, a hypertext handbook with didactic purposes allowing students to approach executive techniques of dry assembly.
series eCAADe
last changed 2022/06/07 07:50

_id 4bd2
authors Carrara, G., Kalay, Y.E. and Novembri, G.
year 1992
title A Computational Framework for Supporting Creative Architectural Design
source New York: John Wiley & Sons, 1992. pp. 17-34 : ill. includes Bibliography
summary Design can be considered a process leading to the definition of a physical form that achieves a certain predefined set of performance criteria. The process comprises three distinct operations: (1) Definition of the desired set of performance criteria (design goals); (2) generation of alternative design solutions; (3) evaluation of the expected performances of alternative design solutions, and comparing them to the predefined criteria. Difficulties arise in performing each one of the three operations, and in combining them into a purposeful unified process. Computational techniques were developed to assist each of the three operations. A comprehensive and successful computational design assistant will have to recognize the limitations of current computational techniques, and incorporate a symbiosis between the machine and the human designer. This symbiosis comprises allocating design tasks between the designer and the computer in a manner that is most appropriate for the task at hand. The task allocation must, therefore, be done dynamically, responding to the changing circumstances of the design process. This report proposes a framework for such a symbiotic partnership, which comprises four major components: (1) User interface and design process control; (2) design goals; (3) evaluators; (4) database
keywords architecture, knowledge base, systems, design process, control
series CADline
email
last changed 2003/06/02 14:41

_id 63d0
authors Carrara, Gianfranco and Novembri, Gabriele
year 1986
title Constraint-bounded design search
source Computer-Aided Architectural Design Futures [CAAD Futures Conference Proceedings / ISBN 0-408-05300-3] Delft (The Netherlands), 18-19 September 1985, pp. 146-157
summary The design process requires continual checking of the consistency of design choices against given sets of goals that have been fulfilled. Such a check is generally performed by comparing abstract representations of design goals with these of the sought real building objects (RBO) resulting from complex intellectual activities closely related to the designer's culture and to the environment in which he operates. In this chapter we define a possible formalization of such representations concerning the goals and the RBO that are usually considered in the architectural design process by our culture in our environment. The representation of design goals is performed by expressing their objective aspects (requirements) and by defining their allowable values (performance specifications). The resulting system of requirements defines the set of allowable solutions and infers an abstract representation of the sought building objects (BO) that consists of the set of characteristics (attributes and relations) which are considered relevant to represent the particular kind of RBO with respect to the consistency check with design goals. The values related to such characteristics define the performances of the RBO while their set establishes its behaviour. Generally speaking, there is no single real object corresponding to an abstract representation but the whole class of the RBO that are equivalent with respect to the values assumed by the considered characteristics. The more we increase the number of these, as well as their specifications, the smaller the class becomes until it coincides with a single real object - given that the assessed specifications be fully consistent. On the other hand, the corresponding representation evolves to the total prefiguration of the RBO. It is not therefore possible to completely define a BO representation in advance since this is inferred by the considered goals and is itself a result of the design process. What can only be established in advance is that any set of characteristics assumed to represent any RBO consists of hierarchic, topological, geometrical and functional relations among the parts of the object at any level of aggregation (from components to space units, to building units, to the whole building) that we define representation structure (RS). Consequently the RS may be thought as the elementary structures that, by superposition and interaction, set up the abstract representation that best fit with design goals.
series CAAD Futures
last changed 1999/04/03 17:58

_id 6737
authors Casaus, A., Fargas, J. and Papuzian, P.
year 1993
title Hybrid Design Environments - A Research Program on Creative Collaboration and Communication
doi https://doi.org/10.52842/conf.ecaade.1993.x.a8h
source [eCAADe Conference Proceedings] Eindhoven (The Netherlands) 11-13 November 1993
summary This paper gives an overview of a research program initiated in the Architectural Design Department of the Escola Tècnica Superior d'Arquitectura de Barcelona on issues of communication and collaboration in computer aided design. The work is centered around emerging design situations which can be attributed directly to the incorporation of new technologies in education and practice. One of these is the "design triangle" composed of a traditional designer, a CAD workstation and a computer literate collaborator acting as the design medium. Another is the "virtual workshop" consisting of design collaboration involving large-scale distributed communications networks. The research program stresses three common characteristics of these situations which it aims to study in parallel in the setting of an design workshop. The first of these is the characteristic of distance, both physical and conceptual, which separates, on the one hand, the traditional designer from the CAD document and, on the other, the participants of a distributed workshop from each other and each others' thinking. The second, is the typically hybrid nature of such situations where computer technology interacts with more traditional techniques and alternative media are combined both at the level of production and in channels and modes of communication. And finally, the third and most significant for the methodology of the research program, is the fact that both the design triangle and the virtual workshop make explicit aspects of design activity, interaction and intentions which remain hidden or are only implicit in traditional designing.

series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201210108
id ijac201210108
authors Celani, Gabriela; Carlos Eduardo Verzola Vaz
year 2012
title CAD Scripting and Visual Programming Languages for Implementing Computational Design Concepts: A Comparison from a Pedagogical Point of View
source International Journal of Architectural Computing vol. 10 - no. 1, 121-138
summary This paper compares the use of scripting languages and visual programming languages for teaching computational design concepts to novice and advanced architecture students. Both systems are described and discussed in terms of the representation methods they use. With novice students better results were obtained with the visual programming language. However, the generative strategies used were restricted to parametric variation and the use of randomness. Scripting, on the other hand, was used by advanced students to implement rule-based generative systems. It is possible to conclude that visual languages can be very useful for making architecture students understand general programming concepts, but scripting languages are fundamental for implementing generative design systems. The paper also discusses the importance of the ability to shift between different representation methods, from more concrete to more abstract, as part of the architectural education.
series journal
last changed 2019/07/30 10:55

_id acadia06_232
id acadia06_232
authors Chaisuparasmikul, Pongsak
year 2006
title Bidirectional Interoperability Between CAD and Energy Performance Simulation Through Virtual Model System Framework
doi https://doi.org/10.52842/conf.acadia.2006.232
source Synthetic Landscapes [Proceedings of the 25th Annual Conference of the Association for Computer-Aided Design in Architecture] pp. 232-250
summary The paper describes a novel approach involving interoperability, data modeling technology, and application of the building information model (BIM) focused on sustainable architecture. They share relationships and multiple experiences that have existed for years but have never have been proven. This interoperability of building performance simulation maps building information and parametric models with energy simulation models, establishing a seamless link between Computer Aided Design (CAD) and energy performance simulation software. During the last four decades, building designers have utilized information and communication technologies to create environmental representations to communicate spatial concepts or designs and to enhance spaces. Most architectural firms still rely on hand labor, drafted drawings, construction documents, specifications, schedules and work plans in traditional means. 3D modeling has been used primarily as a rendering tool, not as the actual representation of the project.With this innovative digitally exchange technology, architects and building designers can visually analyze dynamic building energy performance in response to changes of climate and building parameters. This software interoperability provides full data exchange bidirectional capabilities, which significantly reduces time and effort in energy simulation and data regeneration. Data mapping and exchange are key requirements for building more powerful energy simulations. An effective data model is the bidirectional nucleus of a well-designed relational database, critical in making good choices in selecting design parameters and in gaining and expanding a comprehensive understanding of existing data flows throughout the simulation process, making data systems for simulation more powerful, which has never been done before. Despite the variety of energy simulation applications in the lifecycle of building design and construction projects, there is a need for a system of data integration to allow seamless sharing and bidirectional reuse of data.
series ACADIA
email
last changed 2022/06/07 07:55

_id 7d6c
authors Chapin, William L., Lacey, T. and Leifer, Larry
year 1994
title DesignSpace: A Manual Interaction Environment for Computer Aided Design DEMONSTRATIONS: Virtual Reality Multimedia
source Proceedings of ACM CHI'94 Conference on Human Factors in Computing Systems 1994 v.2 pp. 33-34
summary DesignSpace is a computer-aided-design (CAD) system that facilitates dexterous manipulation of mechanical design representations. The system consists of an interactive simulation programmed with a seamless extended model of the designer's physical environment and driven with continuous instrumentation of the designer's physical actions. The simulation displays consistent visual and aural images of the virtual environment without occluding the designer's sensation of the physical surroundings. Developed at Stanford University's Center for Design Research (CDR), DesignSpace serves as an experimental testbed for design theory and methodology research. DesignSpace includes significant contributions from recent CDR development projects: TalkingGlove, CutPlane, VirtualHand, TeleSign, and VirtualGrasp. The current DesignSpace prototype provides modeling facility for only crude conceptual design and assembly, but can network multiple systems to share a common virtual space and arbitrate the collaborative interaction. The DesignSpace prototype employs three head-tracked rear projection images, head-coupled binaural audio, hand instrumentation, and electromagnetic position tracking.
keywords Virtual Environment; Dexterous Manipulation; Interactive Simulation; Presence; Spatial Acoustics; Manual and Gestural Communication; Teleconference; Collaboration
series other
last changed 2002/07/07 16:01

_id cf2011_p165
id cf2011_p165
authors Chasznar, Andre
year 2011
title Navigating Complex Models in Collaborative Work for (Sustainably) Integrated Design
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 619-636.
summary Increasingly intensive use of computational techniques such as parametric-associative modeling, algorithmic design, performance simulations and generative design in architecture, engineering and construction are leading to increasingly large and complex 3D building models which in turn require increasingly powerful techniques in order to be manipulated and interpreted effectively. Further complexities are of course due also to the multi-disciplinary nature of building projects, in which there can be significant variation and even conflict among the aims of architects, engineers and builders, as well as owners, occupants and other stakeholders in the process. Effective use of model information depends to a large extent on sense-making, which can in some ways be helped but also hindered by schemes for organizing the information contained. Common techniques such as layering, labeling (aka ‘tagging’) and assignment of various other attributes to model objects have significant limitations – especially those arising from general problems of language, ontology and standardization, as well as but distinct from issues of interoperability – both with respect to locating the desired items in a 3D building model and also with respect to displaying the objects in informative ways which effectively assist collaborative design and decision-making. Sustainable design in particular is an area generally requiring a high level of inter-disciplinary collaboration to achieve highly integrated designs which make multiple use of the elements and systems incorporated (though integrated design may also be pursued without explicit aims of sustainability). The proposed paper describes ongoing research concerning alternatives to the currently common techniques for locating and displaying information in 3D building models in support of sense-making to promote collaborative and integrated design. These alternatives comprise on the one hand interactive geometric-content-based methods for search and classification of model objects – as an alternative or complement to common assigned-attribute-based methods – and on the other hand visual analytic techniques – in contrast to existing, relatively static tabular and "physical" views – which can help to increase the informativeness of the geometric data within the model, as well as the non-geometric data that is attached to geometric objects (e.g. as in the cases of BIM and various types of CAE performance simulations). Tests undertaken with architects and engineers in practice and academia to evaluate the proposed methods are also described. Finally conclusions are drawn regarding these methods’ positive present performance and some of their shortcomings, as well as indicating directions for future research concerning the methods’ refinement and extension to help 3D building models become more effective components of the design process than they are at present, both with respect to these models’ present levels of complexity and especially with respect to their anticipated increasing complexity in future.
keywords CAD/CAE/BIM, content-based search, visual analytics
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2021_266
id caadria2021_266
authors Chen, Yao, Lo, Tiantian, Guo, Xiangmin, Du, Ruijie and Hu, Xinchuang
year 2021
title Interactive Virtual Sand Table - A theoretical review on its application towards Urban Planning
doi https://doi.org/10.52842/conf.caadria.2021.2.629
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 629-638
summary The sand table is a tool of expression of urban planning.With the development of computer science and technology,virtual reality technology is playing an important role in many aspects of urban planning and design,as well as,the virtual sand table.This article analyzes the limitations of the current urban planning sand table from designers and other participants perspectives. It analyses the advantages of applying interactive technology in a sand table for urban planning and proposes using such interactive technology in the future. This paper will also investigate three aspects of interactions: human-computer interaction technology, collaborative interaction technology, remote visual interaction technology. The application of interactive technology on the virtual sand table, on the one hand, can carry out a multi-angle forward-looking analysis of the problems of urban construction and improve the efficiency of planning and approval, and development; on the other hand, it can increase public participation in urban planning and design.
keywords interactive technology; urban planning; urban planning sand table; electronic sand table
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2021_368
id caadria2021_368
authors Cheng, Fang-Che, Yen, Chia-Ching and Jeng, Tay-Sheng
year 2021
title Object Recognition and User Interface Design for Vision-based Autonomous Robotic Grasping Point Determination
doi https://doi.org/10.52842/conf.caadria.2021.1.633
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 633-642
summary The integration of Robot Operating System (ROS) with Human-Machine Collaboration (HMC) currently represents the future tendency toward Autonomous Robotic In-Situ Assembly on Construction Sites. In comparison with the industrial environment, construction sites nowadays are extremely complex and unpredictable, due to the different building components and customized design.This paper presents a visual-based object recognition method and user interface enabling on-site robot arms to autonomously handle building components, to build specific designs without the influence of material, shape, and environment. The implementation is an object recognition approach that serves with KUKA industrial robotic manipulator along with an RGB-depth stereo camera in an eye-in-hand configuration to grasp and manipulate found elements to build the desired structure. Opportunities for using vision-based autonomous robotic in-situ assembly on construction sites are reviewed.
keywords computer vision; robot operating system; object recognition; pose estimate; grasping point determination; human-robot collaboration
series CAADRIA
email
last changed 2022/06/07 07:55

_id 2325
authors Chilton, John C.
year 1992
title Computer Aided Structural Design in Architectural Instruction
doi https://doi.org/10.52842/conf.ecaade.1992.443
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 443-450
summary In schools of architecture there is a tendency to associate the use of computers solely with the production of graphic images as part of the architectural design process. However, if the architecture is to work as a building it is also essential that technical aspects of the design are adequately investigated. One of the problem areas for most architectural students is structural design and they are often reluctant to use hand calculations to determine sizes of structural elements within their projects. In recent years, much of the drudgery of hand calculation has been removed from the engineer by the use of computers, and this has, hopefully, allowed a more thorough investigation of conceptual ideas and alternatives. The same benefit is now becoming available to architectural students. This is in the form of structural analysis and design programs that can be used, even by those having a limited knowledge of structural engineering, to assess the stability of designs and obtain approximate sizes for individual structural elements. The paper discusses how the use of such programs is taught, within the School of Architecture at Nottingham. Examples will be given of how they can assist students in the architectural design process. In particular, the application of GLULAM, a program for estimating sizes of laminated timber elements and SAND, a structural analysis and design package, will be described.
series eCAADe
last changed 2022/06/07 07:55

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
doi https://doi.org/10.52842/conf.caadria.2018.2.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 421HOMELOGIN (you are user _anon_758778 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002