CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 5146

_id acadiaregional2011_019
id acadiaregional2011_019
authors Peters, Troy
year 2011
title Simulation by Design: A Parametric Design Tool for Zero Energy Buildings
doi https://doi.org/10.52842/conf.acadia.2011.x.q2q
source Parametricism (SPC) ACADIA Regional 2011 Conference Proceedings
summary To address the shortcomings of integrating building simulation in architectural design and to make it more appealing to students, a simple interface to Energyplus was created. This interface models a simple rectangular building that is passively heated by direct gain and cooled by ventilation. A simple photovoltaic interface has also been added to supply fan energy. This tool has an OpenGL modeler for visualization and uses Energyplus for calculations. The interface will run a full year simulation and graph the results. The results are reported in a yearly graph that shows the outdoor and indoor temperature. The indoor temperature range is based on adaptive comfort level. The interface was tested and used in an introductory design studio in order to comply with the 2010 imperative. The students simulated a simple box and changed the buildings parameters until the building fell within the adaptive comfort zone for most of the year. The climate simulated was Chicago, IL. Using these parameters the students then designed the building. The resulting designs show that even though the students were restricted in parameters, such as window percentage, they were still able to creatively design unique buildings that use zero to negative net energy for heating and cooling in a climate such as Chicago.
series ACADIA
last changed 2022/06/07 07:49

_id acadia11_186
id acadia11_186
authors Chaturvedi, Sanhita; Colmenares, Esteban; Mundim, Thiago
year 2011
title Knitectonics
doi https://doi.org/10.52842/conf.acadia.2011.186
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 186-195
summary The project Knitectonics aims at exploring digital fabrication systems that facilitate optimized, adaptive and specific integrated architectural solutions (Male-Alemany 2010). It is inspired by the beauty of nature systems with their inherent efficiency and performance. The research explored on-site fabrication of monocoques shells, integrating skin and structure along with services and infrastructure, using a simple household technique. It thus embodies a self organized micro system of textures and a macro system of structures. This paper elaborates how the numeric aspects of a textile technique were used, first to digitally imitate the process of assembly and further exploited to develop and visualize a novel fabrication system, based on material research and technical experimentation.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:55

_id ecaade2010_179
id ecaade2010_179
authors Fotiadou, Angeliki
year 2010
title Computing Towards Responsive Architecture: Energy based simulation software for responsive structures
doi https://doi.org/10.52842/conf.ecaade.2010.507
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.507-513
summary The paper has two targets: a theoretical and a practical one which are totally dependant on each other: Its first purpose is to prove based on detailed comparative study by use of competent software apparatus that rotation in a building abiding by strict rules of adaptation to environmental changes (climate, season, time of day, sun duration etc.) should be viewed by modern architecture as a sine-qua-non in terms of energy consumption economy, environmental resources protection, achievement of high standards of living in the city. The aforementioned benefits will be evidenced by means of comparison of responsive structures to traditional ones. The second and most important purpose is to elaborate and provide the fundamental data and information for the creation of a supporting software for the above described model. The two in interaction will result in “revolution” in modern architecture.
wos WOS:000340629400055
keywords Simulation software; Responsive architecture; Kinetic; Energy consumption
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2010_065
id ecaade2010_065
authors Hardy, Steve(n); Lundberg, Jonas
year 2010
title Environmental Catalysts for a Computational Urbanism
doi https://doi.org/10.52842/conf.ecaade.2010.805
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.805-814
summary It is perhaps no longer relevant to discuss digital tools purely as means in themselves; the growth of abstract systems or computational patterns for their own sake simply strain justification in light of real-world concerns such as climate change and economic crises. While growing concerns over climate change have necessitated an increased interest in sustainable urbanism and design, sustainability has done little to yet alter the morphological and typological consequences of architectural space (Hardy, 2008). In a series of overlapping research projects and design studio briefs, students, research assistants and we worked with the iterative and variable processes of Rhinoscript, McNeel’s Grasshopper and Bentley’s Generative Components to explore the possibilities of changing environmental extremes (specifically flooding) as catalysts for providing new urban morphologies and spatial organizations. Working between the master plan and the individual housing unit, we investigated arrays of terrace homes in the London Thames Valley flood zones while simultaneously exploring the potential for computational generation and parametric optimization.
wos WOS:000340629400086
keywords Computational urbanism; Formative strategies; Parametric design; Adaptive vs. mitagative; Environmental formations
series eCAADe
email
last changed 2022/06/07 07:49

_id 4d7d
id 4d7d
authors Marionyt Tyrone Marshall
year 2010
title HYGROSCOPIC CLIMATIC MODULATED BOUNDARIES: A Strategy for Differentiated Performance Using a Natural Circulative and Energy Captive Building Envelope in Hot and Moisture Rich Laden Air Environments
source Perkins+Will Research Journal, Vol 02.01, 41-53
summary The operation and construction of buildings account for almost half of the energy use in the United States. To meet global climate change targets, energy consumption of buildings in the long term must be reduced as well as carbon dioxide emissions. This article explores a theoretical building envelope that generates energy and produces water by drawing water vapor out of the air to deliver new sources of water; it lowers indoor humidity in hot and humid climates. The design in this model considers materiality, surface area and environmental conditions to influence build- ing form. The case in this article considers materials and systems application in the design of the building envelope. The hygroscopic building envelope design strategically senses varying conditions of concentration and density of moisture laden air to provide visual indications of its performance. It is a building skin that emulates biological processes by creating pressure differences and transferring energy in various forms.
keywords biomimetics, building envelope, building façade, computational design, computational control, humidity, hygroscopic, renewable resources
series journal paper
type normal paper
email
more http://www.perkinswill.com/research/research-journal-vol.-02.01.html
last changed 2010/10/31 02:39

_id ijac20108307
id ijac20108307
authors Park, Kat; Nicholas Holt
year 2010
title Parametric Design Process of a Complex Building In Practice Using Programmed Code As Master Model
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 359-376
summary Parameter based design explorations inevitably require a unified master model that represents the current design state, where each parameter being explored is essentially a critical sub-case of this master model. Throughout the constantly changing design state, it is beneficial to maintain a master model that is flexible and adaptive. This paper describes the design process of a complex building whose master model documented the design logic through implementation of software code. This process is illustrated by the case study of Lotte Super Tower (Seoul, Korea) from the beginning of schematic design to end of construction document phase. By maintaining the master model as a platform-free software code, in contrast to platform-dependent methods, the case study illuminates the advantages of documenting the generative logic behind design variations in a way that allows greater flexibility and a higher level of alignment with design intent.
series journal
last changed 2019/05/24 09:55

_id acadia10_243
id acadia10_243
authors Pasold, Anke; Foged, Isak Worre
year 2010
title Performative Responsive Architecture Powered by Climate
doi https://doi.org/10.52842/conf.acadia.2010.243
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 243-249
summary This paper is to link the thermonastic behavior found in flower heads in nature with the material research into bimetallic :abstract strips. This is to advance the discussion of environmental responsive systems on the basis of thermal properties for advanced environmental studies within the field of architecture in general and in form of a responsive building skin in particular.
keywords Environmental response, Material properties, Embedded Informaiton flo
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2010_110
id ecaade2010_110
authors Santo, Yasu; Frazer, John Hamilton; Drogemuller, Robin
year 2010
title Co-Adaptive Environments: Investigation into computer and network enhanced adaptable, sustainable and participatory environments
doi https://doi.org/10.52842/conf.ecaade.2010.677
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.677-686
summary This paper presents research in response to environmental concerns we face today. In a search for a better method to manage spaces and building resources consumed excessively through traditional top-down architectural solutions, the research began by speculating that the building spaces and resources can be managed by designing architectural systems that encourage a bottom-up approach. In other words, this research investigates how to design systems that encourage occupants and users of buildings to actively understand, manage and customise their own spaces. Specific attention is paid to the participation of building users because no matter how sophisticated the system is, the building will become as wasteful as conventional buildings if users cannot, or do not want to, utilise the system effectively. The research is still in its early stages. The intension of this paper is to provide a background to the issue, discuss researches and projects relevant to, but not necessarily about, architecture, and introduce a number of hypothesis and investigations to realise adaptable, participatory and sustainable environments for users.
wos WOS:000340629400073
keywords Adaptive; Interactive; Participatory; Tangible; Ubiquitous
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia10_88
id acadia10_88
authors Steinfeld, Kyle; Bhiwapurkar, Pravin; Dyson, Anna; Vollen, Jason
year 2010
title Situated Bioclimatic Information Design: a new approach to the processing and visualization of climate data
doi https://doi.org/10.52842/conf.acadia.2010.088
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 88-96
summary Currently, most approaches to graphic evaluative frameworks (GEFs) for the early-stage evaluation of bioclimatic design strategies adopt a design-tool metaphor, wherein a battery of analytical routines is performed by a software tool based upon a standardized weather file from which a stock set of graphic material is produced. In seeking to evaluate a broad range of climates and to address a wide variety of passive design strategies, existing climate visualization and evaluation tools position themselves far outside of the context of a situated design problem. Remaining agnostic to the particularities of site, program, tectonic system, and material behavior these tools become, by definition, generic. As a consequence, while such design-tools can be effective in evaluating particular relationships between environmental resource, demand profile, and built-system, they maintain a potential to be rendered ineffective in any outlying cases not specifically anticipated by their authors . Situated Bioclimatic Information Design (SBID) presents an alternative approach that targets a class of design strategies prominent among these outlying cases: those highly responsive to negotiation between the continually fluctuating resources within microclimates and the fluctuating demand profile of the building program. Using a custom-built weather data parser a number of diagrams and data visualizations have been produced under this approach. These visualizations are not only useful in and of themselves for aligning design strategies to specific contexts, but they also illustrate the foundations of a larger theoretical framework for the processing and visualization of climatic data for effective utilization of bioclimatic flows.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:56

_id sigradi2010_412
id sigradi2010_412
authors Weston, Mark
year 2010
title Memory Mesh: Conformationally Adaptive Solar Shading
source SIGraDi 2010_Proceedings of the 14th Congress of the Iberoamerican Society of Digital Graphics, pp. Bogotá, Colombia, November 17-19, 2010, pp. 412-414
summary Innovative technologies that enable more efficient use of energy in the built environment contribute to the effectiveness of green building design, and to sustainable building practices. Digital fabrication can be used to unlock the inherent physical properties of common materials as a means to create solar shades which change shape in response to ambient conditions and user needs in a system which relies on extremely simple mechanical actuation. These conformationally adaptive solar shades take advantage of materials which can be deformed not only to occlude or permit the passage of light, but also to produce optimal angles for the maximization the interception of solar radiation of the surface of the device itself.
keywords solar shading, materiality, sustainability, biomimicry, anisotropy
series SIGRADI
email
last changed 2016/03/10 10:03

_id ecaade2024_286
id ecaade2024_286
authors Aylien, Stefanie; Alkadri, Miktha Farid
year 2024
title Preliminary Energy Simulations of Smart Materials on Building Facade
doi https://doi.org/10.52842/conf.ecaade.2024.1.273
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 273–282
summary As the earth's surface temperature rises, maintaining comfortable indoor temperatures without increasing the energy consumption of cooling systems is necessary. One climate change mitigation that may provide great relevance to this issue is to use adaptive facades as they can provide flexible energy flows in response to dynamic external conditions. Among adaptive facades strategies, smart materials show great potential to respond intelligently to the surrounding environment through changes in material properties. In this regard, smart materials require little to no additional active system because of changes made internally by the material. This paper aims to investigate potential applications of smart materials in building facades by first analyzing the energy performance of 9 smart materials (i.e., low-e glass, nePCM, PCM filled, paraffin MG29, PV Vacuum glazing, semitransparent PV A, semitransparent PV B, insulated DSSC-R, DSSC-G) found in adaptive facades. This study then specifically calculates EUI (energy use intensity), cooling load, and average solar heat gain for existing buildings located in Jakarta. Lastly, two smart materials (i.e., PV and PCM) are selected to compare building façade construction proposals based on their transmissivity, maximum solar heat gain, and conductivity. Despite the potential application of smart materials, this study found that PV and PCM provide lower performance values due to energy demand functions that predominantly focus on generation rather than contributing to heating and cooling aspects. This study can further benefit architects when dealing with façade construction materials, especially in tropical countries. It needs to be aligned with the energy performance produced by the façade, the surrounding environment, and the local context.
keywords Smart Materials, Adaptive Facade, Energy Performance
series eCAADe
email
last changed 2024/11/17 22:05

_id 9824
authors Etzion, Y., Pearlmutter, D., Erell, E. and Meir, I.A.
year 1997
title Adaptive architecture: integrating low-energy technologies for climate control in the desert
source Automation in Construction 6 (5-6) (1997) pp. 417-425
summary The article describes a `climatically adaptive' approach to intelligent building in which a variety of technologies are integrated in the architectural design to provide thermal comfort with a minimal expenditure of energy. This concept is illustrated by the design of the Blaustein International Center for Desert Studies, a multi-use complex completed recently at the Sede-Boker Campus of Ben-Gurion University of the Negev. In response to the local climate of this desert region, a number of strategies were developed by the authors to exploit natural energy for heating and cooling: earth berming of major parts of the building, 'selective glazing' for seasonal shading and energy collection, a down-draft 'cool-tower' for evaporative cooling and a hybrid mechanism for hot-air supply are several of the unique systems whose performance and feasibility are analyzed within the context of the overall building design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id acadia23_v2_72
id acadia23_v2_72
authors Hosmer, Tyson; Mutis, Sergio; Hughes, Eric; He, Ziming; Siedler, Philipp; Gheorghiu, Octavian; Erdinçer, Bariº
year 2023
title Autonomous Collaborative: Robotic Reconfiguration with Deep Multi-Agent Reinforcement Learning (ACRR+DMARL)
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 72-90.
summary To address the unprecedented challenges of the global climate and housing crises, requires a radical change in the way we conceive, plan, and construct buildings, from static continuous objects to adaptive eco-systems of reconfigurable parts. Living systems in nature demonstrate extraordinary scalable efficiencies in adaptive construction with simple flexible parts made from sustainable materials. The interdisciplinary field of collec- tive robotic construction (CRC) inspired by natural builders has begun to demonstrate potential for scalable, adaptive, resilient, and low-cost solutions for building construc- tion with simple robots. Yet, to explore the opportunities inspired by natural systems, CRC systems must be developed utilizing artificial intelligence for collaborative and adaptive construction, which has yet to be explored. Autonomous Collaborative Robotic Reconfiguration (ACRR) is a robotic material system with an adaptive lifecycle trained with deep, multi-agent reinforcement learning (DMARL) for collaborative reconfigura- tion. Autonomous Collaborative Robotic Reconfiguration is implemented through three interrelated components codesigned in relation to each other: 1) a reconfigurable robotic material system; 2) a cyber-physical simulation, sensing, and control system; and 3) a framework for collaborative robotic intelligence with DMARL. The integration of the CRC system with bidirectional cyber-physical control and collaborative intelligence enables ACRR to operate as a scalable and adaptive architectural eco-system. It has the potential not only to transform how we design and build architecture, but to fundamentally change our relationship to the built environment moving from automated toward autonomous construction.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ascaad2022_032
id ascaad2022_032
authors Ibrahim, Aly; Omar, Walid; Ebrahim, Sherif; Abdelmohsen, Sherif
year 2022
title Moisture-Harvesting Lizard Skins as an Inspiration for Performative Building Envelopes in Arid Climates
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 515-528
summary Research on shape-shifting adaptive architectural skins has recently focused on bio-inspired programmable materials. Only a few studies however examine the microstructure of living organisms, especially in terms of morphological adaptation in harsh climatic conditions. This paper explores the microstructure of moisture-harvesting lizard skins, specifically the Trapelus species of the Agamidae family in North-East Africa, as an inspiration for programmable materials in adaptive building skins in the arid climate of Egypt. The paper investigates the ability to improve the durability and morphological capabilities of programmable materials based on surface formation, utilizing digital fabrication techniques. A series of physical experiments were conducted on different samples of 3D printed wood filament under several humidity conditions, as a single layer, with textured patterns, and with the addition of potassium chloride as a moisture-harvesting chemical composite. The paper concluded that materials composed of textured patterns and moisture-harvesting chemical composites exhibited the highest moisture retention, therefore leading to advantages in its use in adaptive building skins in arid climates, through a wide variety of design possibilities for performative building envelopes.
series ASCAAD
email
last changed 2024/02/16 13:24

_id caadria2024_235
id caadria2024_235
authors Jeong, Moon-Young, Rössle, Reiner, Böhm, Michael, Matheou, Maria and Sawodny, Oliver
year 2024
title Bridging Exterior and Interior Climate: Interdisciplinary Design of a Dual-functional Adaptive Kinetic Façade Prototype
doi https://doi.org/10.52842/conf.caadria.2024.1.435
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 435–444
summary Building facades serve as the interface between their interior and exterior environments. With climate change necessitating adaptive solutions, the development of adaptive facades for a sustainable operational energy cycle for buildings has been prompted. This study delves into the design and prototyping of KineticSKIN, an Adaptive Kinetic Façade (AKF) system. The system leverages kinetic mechanisms to achieve dual objectives: strategically redistributing incident solar energy and enhancing internal user comfort. This paper outlines the comprehensive schematic design phase, integrating performative architectural design through daylighting simulations and mechanical kinematic schemes with an interdisciplinary research approach bridging architecture and mechanical engineering domains. Furthermore, it provides detailed insights into the evolutionary progression of transformable joints and cable-driven actuation systems for practical solutions to the kinetic façade system.
keywords Adaptive façade, Kinetic system, Dual-functional, Cable-driven actuation
series CAADRIA
email
last changed 2024/11/17 22:05

_id sigradi2014_282
id sigradi2014_282
authors Kerestes, James
year 2014
title Design Out of Necessity - Architectural Approach to Extreme Climatic Conditions
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 130-133
summary This paper is the culmination of the first phase of research in the development of adaptive surface conditions which can mitigate extreme climatic scenarios, specifically air pollution. How can the discipline of architecture address worst-case climate scenarios within inhabitable structures? The question asked throughout this case study and research project was essentially based on a critique of the architectural community’s utilization of sustainable technologies in design, and whether current design initiatives were in fact aggressive enough in their approach to “green” building. While assessing the probable environmental changes likely to affect the architectural discipline in the future, this research project developed computational simulations of polluted atmospheres in order to develop surfaces which would respond formally.
keywords Adaptive; Behavioral; Responsive; Ecological; Generative
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2023_130
id ecaade2023_130
authors Nas, Mehmet Oguz and Gönenç Sorguç, Arzu
year 2023
title 4D Printing of Hygroscopic Wood Based Actuators for Climate Responsive Skin
doi https://doi.org/10.52842/conf.ecaade.2023.1.439
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 439–448
summary Adaptive building systems aim to enhance user comfort and reduce energy consumption in buildings. However, sensing the environment and generating relevant motion requires complex systems. The high costs associated with the installation, maintenance, and energy consumption of traditional systems hinder their widespread adoption. A more efficient alternative can be found in nature by harnessing the intrinsic properties of materials. Recent studies inspired by pinecones showed that wood bilayers with different swelling and shrinking ratios can passively shape change in response to environmental humidity. The morphing direction is determined by fiber orientation, which can be controlled by extrusion-based 3D printers. The existing literature highlights several challenges in utilizing hygroscopic wood actuators for climate-responsive building skins, including the predictability of motion, response speed, and scalability. Hence, this research investigates the design space at both mesostructural and macrostructural levels for controlled, scaleable motion. To this end, a series of experiments were conducted in a controlled environment to observe the actuation dynamics. The experiments explored design parameters including thickness, porosity, bilayer ratio, layer orientation, and 3D printing parameters such as layer thickness and printing order. Collected data were utilized to construct a model that can predict the actuation and find the configuration for the required motion. Two implementations of this model are proposed. While the first design makes use of combined actuators for motion amplification, the latter employs pre-stressed bistability to control the timing of motion. Both designs were tested at scales of 1/2 and 1 to 1, using a wood-based filament and wood veneer as actuators, respectively. The results demonstrate that the use of multiple joined actuators significantly increases the actuation speed. Moreover, it is shown that the humidity level required to trigger the shape-shifts can be tuned thanks to the pre-stressed bistable structures. This is promising in terms of adaptability to diverse climates and enhancement of energy efficiency in buildings.
keywords 4D Printing Wood, Biomimicry, Hygroscopic Actuators, Pre-stressed Bistability, Climate-Responsive, Responsive Architecture
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia22_506
id acadia22_506
authors Ozarisoy, Bertug; Altan, Hasim
year 2022
title Passive Cooling Strategies for Thriving in a Changing Climate
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 506-523.
summary This paper investigates the thermal performance of 288 flats in three different nationally representative collective housing archetypes in the southeastern Mediterranean island of Cyprus, where the climate is subtropical (Csa) and partly semi-arid (Bsh), as designated in the Köppen climate classification system. The participants’ experiences and thermal sensation votes were assessed to predict individual aspects of adaptive thermal comfort, and the relevance thereof on overheating, and in situ measurements—including indoor air temperatures, thermal imaging survey, recorded building-fabric-element heat fluxes, on-site environmental conditions monitoring, and review of household energy bills to accurately determine actual energy use—were collected
series ACADIA
type paper
email
last changed 2024/02/06 14:04

_id cdrf2022_337
id cdrf2022_337
authors Ping Chen, Chang Liu, and Hsin-Hsien Chiu
year 2022
title Study on Optimization of Building Climate Adaptive Morphology in Cold Regions of China: Case of U-Shaped College Building
doi https://doi.org/https://doi.org/10.1007/978-981-19-8637-6_30
source Proceedings of the 2022 DigitalFUTURES The 4st International Conference on Computational Design and Robotic Fabrication (CDRF 2022)
summary Proper design of building form will facilitate the use of climate environment in order to reduce the reliance of buildings on active equipment. This study takes the cold region of China as the research area, and Jinan city of Shandong province as a typical city in the cold region for specific research. The multi-objective optimization tool based on NSGA-II algorithm is used to optimize the opening angle, length of both sides and floor height of the building, and finally the optimal size range of the university teaching building under the influence of solar radiation heat gain in winter and summer is obtained, and the results show that for the U-shaped university teaching building, the parameters that affect the building performance more in the case of the east side opening are the length of the north side building and the rotation angle of the south side building, and the parameters that affect the performance more in the case of the west side opening are the length of the building on the south side.
series cdrf
email
last changed 2024/05/29 14:03

_id cf2019_045
id cf2019_045
authors Rahmani, Ayad and Mona Ghandi
year 2019
title Morphogenesis: Masonry, Social Justice, and Evolutionary Thinking
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 389-398
summary This paper is the product of work generated in an undergraduate design studio, looking at masonry as a way to tackle the question of culture and the environment. Might masonry be so assembled as to address changes in human and non-human dynamics? The material has been largely used as a veneer to turn an otherwise colorless building into a spectacle of artistic and economic worth. Might we be able to change that, and see in it the capacity for adaptation, accommodating shifts in climate but also taste and seasonal function? To answer these questions, the studio relied, among other methods, on computational design, digital tools whose virtue lies precisely in their capacity to recognize and respond to change. Pedagogically, this meant a different approach to design, a nonlinear back and forth between the physical and the digital, including the use of body installation as an examination of the site.
keywords Computational Design, Algorithmic and Parametric Design, Material Computation, Masonry, Environment and Culture, Social Design, Adaptive Thinking
series CAAD Futures
email
last changed 2019/07/29 14:15

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 257HOMELOGIN (you are user _anon_341661 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002