CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 8952

_id ecaadesigradi2019_397
id ecaadesigradi2019_397
authors Cristie, Verina and Joyce, Sam Conrad
year 2019
title 'GHShot': a collaborative and distributed visual version control for Grasshopper parametric programming
doi https://doi.org/10.52842/conf.ecaade.2019.3.035
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 35-44
summary When working with parametric models, architects typically focus on using rather structuring them (Woodbury, 2010). As a result, increasing design complexity typically means a convoluted parametric model, amplifying known problems: 'hard to understand, modify, share and reuse' (Smith 2007; Davis 2011). This practice is in contrast with conventional software-programming where programmers are known to meticulously document and structure their code with versioning tool. In this paper, we argue that versioning tools could help to manage parametric modelling complexity, as it has been showing with software counterparts. Four key features of version control: committing, differentiating, branching, and merging, and how they could be implemented in a parametric design practice are discussed. Initial user test sessions with 5 student designers using GHShot Grasshopper version control plugin (Cristie and Joyce 2018, 2017) revealed that the plugin is useful to record and overview design progression, share model, and provide a fallback mechanism.
keywords Version Control; Parametric Design; Collaborative Design; Design Exploration
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2010_017
id ecaade2010_017
authors Hemsath, Timothy L.
year 2010
title Searching for Innovation Through Teaching Digital Fabrication
doi https://doi.org/10.52842/conf.ecaade.2010.021
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.21-30
summary The use of digital fabrication in the discourse and education of architectural students has become a common skill in many schools of architecture. There is a growing demand for computer-aided design (CAD) skills, computer-aided manufacturing (CAM) logic, programming and fabrication knowledge in student education. The relevance of fabrication tools for architecture and design education goes beyond mere competence and can pursue innovation in what Branko Koleravic (2003) observed, “The digital age has radically reconfigured the relationship between conception and production, creating a direct digital link between what can be conceived and what can be built through “file-to-factory” processes of computer numerically controlled (CNC) fabrication”. However, there has been very little written about what students are actually learning through digital fabrication courses and the relevance of the skills required for innovation in the field of digital fabrication.
wos WOS:000340629400001
keywords CAD; CAM; Pedagogy; Curriculum
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
doi https://doi.org/10.52842/conf.acadia.2011.372
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id ascaad2010_179
id ascaad2010_179
authors Jones, Charles; Kevin Sweet
year 2010
title Over Constrained
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 179-188
summary Parametric software has fundamentally changed the way in which architecture is conceptualized, developed and even constructed. The ability to assign parameters or numeric variables to specific portions of a project has allowed designers the potential to test variations of their design. Small changes to a single parameter can have an exponential effect on the designed object and alter its appearance beyond original preconceptions in both positive and negative ways. Parametric software also has the ability to constrain or restrict geometry to set values, parameters or conditions. This has the benefit of allowing portions of a form to remain constant or unchanged while simultaneously allowing for a great degree of flexibility in response to a design intent. Constraining portions of a design allows architects to respond to existing or unalterable conditions by ""locking down"" information within a project and then explore those portions that can change more freely. This programmed relationship between the parameter and the form, once established, can give the illusion of minimal effort for maximum output. The ease in which geometrical form can be altered and shaped by a single variable can mislead beginning designers into thinking that the software makes these relationships for them. What is hidden, is the programming or connections needed between the parameters and the geometry in order to produce such dramatic change. Finally, thinking parametrically about design reintroduces the concept of a rigorous, intent driven, fabrication oriented practice; a practice lost in a digital era where the novelty of new tools was sufficient to produce new form. Because parametric models must have established relationships to all parts of the design, each component must have a purpose, be well thought out, and have a direct relationship to a real world object. The introduction of parametric design methodologies into an architectural pedagogy reestablishes architectural praxis in an academic setting. Students are taught to design based on creating relationships to connected components; just as they would do in a professional architectural practice. This paper outlines how Digital Project – a parametric based software – was introduced into an academic setting in an attempt reconnect the ideologies of academia with the practicalities of professional practice. In order to take full advantage of Digital Project as a parameter based software, a project that creates modular, flexible geometries was devised. Produced over one semester, the project set out to find ways of controlling designed geometry through variable parameters that allowed the initial module to be instantiated or replicated into a wall condition: maintaining a unified whole of discrete components. This paper outlines this process, the results and how the outcomes demonstrates the parametric ideologies described above.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_195
id ecaade2010_195
authors Leitão, António; Cabecinhas, Filipe; Martins, Susana
year 2010
title Revisiting the Architecture Curriculum: The programming perspective
doi https://doi.org/10.52842/conf.ecaade.2010.081
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.81-88
summary Nowadays, programming is quickly becoming part of the tool chest of the modern architect. Unfortunately, the architecture curriculum does not yet recognize its importance and usefulness or uses inadequate languages or programming environments to teach it. In this paper we argue that it is necessary to include computer science courses in the architecture curriculum and that these courses should be tailored to the needs of the architects. To help achieve this goal, we propose VisualScheme, an interactive programming environment that accompanies the architect from the learning phases to the advanced uses and that can be explored in pedagogic, research, and industry settings.
wos WOS:000340629400008
keywords Generative design; Programming; Teaching; Computer-aided-design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_214
id ecaade2010_214
authors Lemberski, David; Hemmerling, Marco
year 2010
title Mixer Modeling – An Intuitive Design Tool: Using a hardware controller to actuate parametric design software
doi https://doi.org/10.52842/conf.ecaade.2010.453
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.453-458
summary Music and architecture share not only phenomenological similarities in relation to their characteristics - like volume, timbre, tone pitch, instrumentation vs. geometry, materiality, light ambiance or perspective - but imply as well comparability in the process of creation. The investigation of digital tools that cross borders between music and architecture was the starting point for the research project „Mixer Modeling“. Against this background the paper discusses the transformation of a musical composition controller into an intuitive design tool for the generation of architectural geometries. In the same amount that the use of a MIDI-controller increases the degrees of freedom for the simultaneous activation of various parameters the definition of geometric dependencies on the level of visual programming become more important for the resulting geometry.
wos WOS:000340629400049
keywords Intuitive design tool; Parametric design; Music and architecture; Hardware controller; MIDI; Visual programming; Human-computer interaction
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2010_104
id ecaade2010_104
authors Mark, Earl
year 2010
title Optimizing Solar Insolation in Transformable Fabric Architecture: A parametric search design process
doi https://doi.org/10.52842/conf.ecaade.2010.461
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.461-470
summary A design studio and a parallel research project focused on transformable fabric architecture. To facilitate a part of this work, computer based shape generation tools were used to optimize the placement of thin-film photovoltaic cells onto a transformable roof structure. In addition, the tension membrane fabric is rigged in a way that is similar to a sailing boat. The fabric is set into position by winches and cables. The winches are hand-operated so as to lower the overall energy cost. The initial computer models proceeded concurrently with the mockup of small-scale physical prototypes. In addition, the author used an open source programming language to implement a particle spring real time simulation of the fabric shapes. The simulation included a three-dimensional graphical representation of solar insolation and helped to further determine the physical geometry of the project. One of the goals was to evaluate whether larger transformations to the structure as a whole or smaller movements in the fabric would help to optimize the solar insolation benefits. As the examination of potential forms narrowed down to classical saddle shapes, the practical details of rigging the fabric imposed further limitations on its transformable nature. This paper is focused on how modeling with ad hoc tools and especially real-time computer simulation influenced the direction of the work.
wos WOS:000340629400050
keywords Transformable fabric architecture; Parametric design; Thin-film photovoltaic cells; Animation; Simulation
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2010_025
id caadria2010_025
authors Meyboom, Annalisa; Jerzy Wojtowicz and Greg Johnson
year 2010
title ROBO studio: towards architectronics
doi https://doi.org/10.52842/conf.caadria.2010.259
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 259-268
summary Contemporary architecture can be seen as a dynamic system that causes change to its environment, or even as system that can modify itself. Interactive or responsive environments are not totally new to architecture however the possibilities in architecture have only been lightly referred to. This interdisciplinary design studio, with mechatronics engineers and architects collaborating, explored possible applications with real world equipment, sensors and knowledge. Development of responsive architecture requires architects to have a fluency in sensors, actuators and their control system programming. New potential application of technologies requires a re-framing of what that technology could do in a different social application. Together these issues challenged architecture and engineering students in a collaborative design environment. The resulting projects – kinetic architecture on control systems – challenge our understanding of what our built environment could be.
keywords Architecture; mechatronics; robotics; kinematics; design
series CAADRIA
type normal paper
email
last changed 2022/06/07 07:58

_id sigradi2012_235
id sigradi2012_235
authors Polo, Pablo Herrera
year 2012
title Reutilizando códigos como mecanismo de información y conocimiento: Programación en arquitectura [Reusing codes as a mechanism of information and cognition: Scripting in architecture]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 74-78
summary Differently from other regions in the Planet, since 2010, in Latin America textual programming language (Rhinoscripting) is being replaced by its visual equivalent (Grasshopper). This is a consequence of our preference for an interactive platform, and because our design problems are not as complex, so we aim to control geometrical problems or aspects belonging to an product scale instead of an architectural one. Problems emerging when creating code could be improved by modifying and reusing existing solutions as a starting point, since learning would not be centered in the object but in the process of creating it, using a suitable instrument.
keywords Visual Programming Language; Textual Programming Language; Scripting; Grasshopper; Rhinoscripting
series SIGRADI
email
last changed 2016/03/10 09:57

_id ijac20108303
id ijac20108303
authors Rafael, Urquiza S.
year 2010
title Parametric Performative Systems: Designing a Bioclimatic Responsive Skin
source International Journal of Architectural Computing vol. 8 - no. 3, pp. 279-300
summary This paper assumes the façade as an innovative element of interaction between the inside and the outside: the architectural skin. As in nature, one of its most significant functions is the energy exchange with the environment. Similarly, efficiency increases by passive and active responses to climate conditions and site orientation. This research explores the potential of parametric techniques, programming and digital manufacturing, to design and build a Bioclimatic Responsive Skin (BRS). Firstly, we designed a bio-component applicable to any surface due to its parametric nature. Secondly, we fabricated two non-reactive working prototypes to study the manufacturing and construction details. Thirdly, we integrated the physical and the digital interfaces by using Generative Components™, Arduino, and Ubimash to generate a kinetic responsive model. This prototype was presented at SmartGeometry Workshop and Conference 2010. Finally, Lem3a architecture used this BRS in a real design project for a Sustainable house in New Hope, PA.
series journal
last changed 2019/05/24 09:55

_id ascaad2010_075
id ascaad2010_075
authors Schubert, Gerhard; Kaufmann Stefan and Petzold Frank
year 2010
title Project Wave 0.18
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 75-88
summary In recent years a number of projects have been emerged, in which the new possibilities of the computer as a design tool, have been used. Through the digital chain from design to manufacturing the efficiency has increased and allows the implementation of complex architectural structures. With all these new opportunities, also new challenges arise in the teaching and the educational concepts. The paper describes the detailed course concept and the didactic strategy using the example of a parametric designed roof structure, we designed, planed and build up in scale 1:1 within the main course. „Wendepunkt|e im Bauen“ (Turning point|s of building) is the name of an exhibition at the “Pinakothek der Moderne” in Spring 2010. In addition to contributions of the industrialization in the building industry from 1850 to the present day, the exhibition also serves as a platform, to demonstrate new possibilities of computer-aided parametric design and the closely related computer aided manufacturing (CAM). In this context, we took the chance to build a sculpture in Scale 1:1 to show the potential of a constant digital workflow and the digital fabrication. Through the digital chain from design to manufacturing, the efficiency has been increased by the computer and allows the implementation of new complex architectural structures. But the efficiency of the high-degree-automation through the use of computerized machines usually ends in the production of the components. Because this coincidence of the elements in the assembly often proves cost and time, the aim of the project was to optimize both, the production of components and their assembly as well. As part of the wintercourse 2009/2010 different aspects of automation have been reviewed and new solutions have been analyzed. Together with 15 students of the Faculty of Architecture the complete digital chain started with the first design ideas, about parametric programming through production and assembly had been researched, implemented and brought to reality. In the first steps, the students had to learn about the potential, but also about the problems coming with the digital-design and the attached digital-production. There for the course took part at our computerlab. In weekly workshops, all ideas have been implemented and tested directly in the 3-dimensional parametric model. And thanks to the interdisciplinary work with the Department of Structural Design also static factors had been considered, to optimize the form. Parallel to the digital form-finding process, the first prototypes have been produced by the students. By using the chairs 3D-CNC-Mills we were able to check the programmed connection detail in reality and apply the so learned lessons to the further development. After nearly 3 month of research, designing, planning and programming, we were able to produce the over 1000 different parts in only 4 days. By developing a special pre-stressed structure and connection detail it was also possible, to assemble the whole structure (13.5m x 4.5m x 4m) in only one day. The close connection between digital design (CAD) and digital manufacturing (CAM) is an important point of our doctrine. By the fact, that the students operate the machines themselves, but also implement projects on a scale of 1:1, they learn to independently evaluate these new tools and to use them in a meaningful way.
series ASCAAD
email
last changed 2011/03/01 07:36

_id sigradi2009_833
id sigradi2009_833
authors Stoyanov, Momchil
year 2009
title Análise lumínica virtual de elementos construídos por meio de programação: exemplo de aplicação em software do tipo BIM [ Analysis of Virtual Elements Constructed by Means of Programming: The Example of BIM-Application Software]
source SIGraDi 2009 - Proceedings of the 13th Congress of the Iberoamerican Society of Digital Graphics, Sao Paulo, Brazil, November 16-18, 2009
summary Daylighting is an important part of designing sustainably. Daylighting is the use of natural light for primary interior illumination. This reduces our need for artificial light within the space, thus reducing internal heat gain and energy use. Direct sunlight, once it enters the building, is not only light but heat, and that additional heat will need to be taken into account in your energy analysis." While Autodesk Revit Architecture 2010 (ARA) itself cannot perform the actual analysis, there are some ways to do that. This papper focuses on the study of parametric modeling using a BIM tool for daylighting analysis. This paper presents the first part of the building method of LUME, a plug-in maked whit C# programming language in Microsoft Visual Studio 2010 and ARA Software Developer Kit (SDK) package. The script accepts as its input a standard three dimensional model of building opening and his position on space.
keywords Script language; BIM; Revit Architecture; Energy analysis; Daylighting; Parametric design process
series SIGRADI
email
last changed 2016/03/10 10:01

_id ecaade2011_093
id ecaade2011_093
authors Veliz, Alejandro; Sills, Pablo
year 2011
title Digital design of reconstruction proposals in Chile
doi https://doi.org/10.52842/conf.ecaade.2011.673
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.673-678
summary After the earthquake and tsunami occurred in Chile on February 27th 2010, the Technical University Federico Santa Maria was asked to contribute with reconstruction proposals for the commercial infrastructure destroyed in the town “San Juan Bautista”. Located 600 km (~370 mi) away from the continent, this town is not just the home of several endemic species, but is also located next to a National Protected Area and UNESCO Biosphere Reserve. Within this context, the design problem consisted on the development of a component-based strategy and prefabrication requirements, and to reduce to the minimum the implied logistics and environmental impacts of the new buildings. With a Studio of 23 final year students and the support of the Architecture Firms Association, 11 projects were developed using digital tools such as visual programming and digital fabrication. Finally, technical documentation was produced and delivered to the local and government authorities.
wos WOS:000335665500078
keywords Visual programming; post-disaster reconstruction; prefabrication; constraintbased design; building components
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2010_136
id ecaade2010_136
authors Yan, Wei
year 2010
title Teaching Building Information Modeling at Undergraduate and Graduate Levels
doi https://doi.org/10.52842/conf.ecaade.2010.097
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.97-106
summary The paper presents our experience and findings of teaching Building Information Modeling (BIM) at both the undergraduate and graduate levels. At the undergraduate level for Environmental Design students, basic BIM concept and modeling were exercised. At the graduate level for Ph.D. and MS students in Architecture, MArch students, and MS students in Construction Science, advanced topics including parametric design, database, Application Programming Interface (API), and building lifecycle applications of BIM were introduced. We suggest an incremental BIM skill development with a course agenda, for example: first year college – modeling; second year and third year – simulation and analysis for building systems; and fourth year and above until graduate level – customization. Detailed description of the courses, strategies, student projects, findings, and discussions are given in the paper.
wos WOS:000340629400010
keywords Building information modeling; Education; Undergraduate; Graduate
series eCAADe
email
last changed 2022/06/07 07:57

_id lasg_hylozoicground_2010_fulltext
id lasg_hylozoicground_2010_fulltext
year 2010
title Hylozoic Ground; Liminal Responsive Architecture
source Hylozoic Ground; Liminal Responsive Architecture [ISBN 978-1-926724-02-7] Riverside Architectural Press: Toronto, Canada 2010.
summary Introductory summary of developing Hylozoic Series, a collection of life-like architectural structures
keywords Hylozoism, Hylozoic series, components, assemblies, design process
last changed 2019/07/29 14:00

_id ascaad2010_241
id ascaad2010_241
authors Aboreeda, Faten; Dina Taha
year 2010
title Using Case-Based Reasoning to Aid Sustainable Design
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 241-246
summary Since so far there exists only one planet, sustainable design is considered the (ethical) future in all fields of design. Although both architecture and construction are being considered major emitters of green house gases, a wise design not only can lead to minimizing this impact but it can also lead to restoring and regenerating the environment to a sustainable state. This paper presents an on-going research that aims at simplifying the elements and facilitating the process of sustainable design by using case-based reasoning. This is achieved through learning from past experiences; both good and bad ones, by providing a database application with a process-friendly interface which divides the main pillars of sustainable design into categories. Each building contains different stories related to different sustainable related issues. Each story can be repeated in /linked to many buildings. By providing designers with those past experiences, it is believed that deeper-studied designs can be more easily developed. Also a deeper analysis and understanding can be further implemented and produced with less effort for experienced and non-experienced architects in sustainable design. This would also decrease the consumption of time during the design process and encourage even more designers to integrate the sustainability concept into more designs. This research discusses the influence of sustainable design within the architectural domain, and suggests a computer application that aids architects during the preliminary design processes.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2010_171
id ecaade2010_171
authors Achten, Henri; Kopriva, Milos
year 2010
title A Design Methodological Framework for Interactive Architecture
doi https://doi.org/10.52842/conf.ecaade.2010.169
source FUTURE CITIES [28th eCAADe Conference Proceedings / ISBN 978-0-9541183-9-6] ETH Zurich (Switzerland) 15-18 September 2010, pp.169-177
summary Interactive architecture is a fairly recent phenomenon enabled through new materials and technologies. Through experimentation architects are coping with questions of changeability, adaptability, and interaction. However, there are no comprehensive design methods to support this type of architecture. In this paper we aim to bring together methods that can support the design of interactive architecture. The methods are ordered in a methodological framework that provides an overview of possible approaches.
wos WOS:000340629400018
keywords Design methods; Interactive architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2010_022
id caadria2010_022
authors Ambrose, Michael A. and Lisa Lacharité-Lostritto
year 2010
title Representation in a time of re-presentation: design media processes in architectural education
doi https://doi.org/10.52842/conf.caadria.2010.229
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 229-238
summary This paper examines what is appropriate and valuable to include in architectural education in light of changing representational conventions and techniques. Architecture finds itself at a unique moment in time where the means of production for the profession, and indeed the entire discipline, are transforming and fundamentally undermine the existing models of education, production and understanding. The threat to architecture education is that architecture becomes learned techniques rather than a way of operating within a body of knowledge that grows and responds to its context. These digital media processes offer contemporary education new and challenging ways to communicate ideas, sometimes subverting the imperative for “drawing” as the representation does not refer to information in the abstract, but IS the information quite literally.
keywords Design education; design theory; digital design representation
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia10_125
id acadia10_125
authors Andersen, Paul; Salomon, David
year 2010
title The Pattern That Connects
doi https://doi.org/10.52842/conf.acadia.2010.125
source ACADIA 10: LIFE in:formation, On Responsive Information and Variations in Architecture [Proceedings of the 30th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-4507-3471-4] New York 21-24 October, 2010), pp. 125-132
summary While patterns have a spotty history in architecture, their definitions and uses in other fields offer new possibilities for design. This paper examines those definitions and uses—including theories put forward by architectural theorist, Christopher Alexander; art educator, Gyorgy Kepes; chemist, Ilya Prigogine; and anthropologist, Gregory Bateson. Of particular interest is the shift from eternal, essential, universal, and fundamental patterns to fleeting, superficial, specific, and incidental versions. While endemic to many contemporary architectural practices, this multifaceted view of patterns was anticipated by Bateson, who saw them as agents of evolution and learning. His desire to combine redundancy and noise offers architects new ways to understand patterns and use them to link form and information, matter and thought.
keywords pattern, Bateson, evolution, noise, redundancy, feedback
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 447HOMELOGIN (you are user _anon_939085 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002