CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 4500

_id ecaade2011_021
id ecaade2011_021
authors Asanowicz, Aleksander
year 2011
title Digital “serial vision” - new approach in urban composition teaching
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.716-724
doi https://doi.org/10.52842/conf.ecaade.2011.716
wos WOS:000335665500083
summary The paper discusses the following problem: How can digital technology are integrated with urban composition teaching to provide a better understanding of the aesthetical and emotional aspects of the city? It argues for the current need for an integration of computer modelling and the approaches developed form the work of K. Lynch, G. Cullen, R. Krier, F. Ching. The paper is based on the experience in design studio teaching and an experiment completed with students. The exercise shows the students that different spatial organization may cause different emotions according to the treatment of space-defining elements. The paper presents the background and context as well as describes the experimental environment and the student work.
keywords Urban composition; serial vision; computer animation
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2011_130
id ecaade2011_130
authors Güngör, Özge; Ça_da_, Gülen; Balaban, Özgün
year 2011
title A Mass Customization Oriented Housing Design Model Based on Genetic Algorithm
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.325-331
doi https://doi.org/10.52842/conf.ecaade.2011.325
wos WOS:000335665500037
summary Today, right along with the products marketed and manufactured by the mass production techniques, continuously developing computing and technology have an undeniable impact on customized design, in which the users have a say on the products design and manufacturing. Mass customization is slowly settling down in architectural design concepts as well, like housing which is one of the best areas where users can reflect their living habits and preferences. In this study, user centric mass customization based model is developed, which creates housing floor plan combining the user-supplied data with the best possible creations generated by the genetic algorithms.
keywords Architectural Design Computing; Housing Design; Genetic Algorithm; Mass Customization
series eCAADe
email
last changed 2022/05/01 23:21

_id cf2011_p016
id cf2011_p016
authors Merrick, Kathryn; Gu Ning
year 2011
title Supporting Collective Intelligence for Design in Virtual Worlds: A Case Study of the Lego Universe
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 637-652.
summary Virtual worlds are multi-faceted technologies. Facets of virtual worlds include graphical simulation tools, communication, design and modelling tools, artificial intelligence, network structure, persistent object-oriented infrastructure, economy, governance and user presence and interaction. Recent studies (Merrick et al., 2010) and applications (Rosenman et al., 2006; Maher et al., 2006) have shown that the combination of design, modelling and communication tools, and artificial intelligence in virtual worlds makes them suitable platforms for supporting collaborative design, including human-human collaboration and human-computer co-creativity. Virtual worlds are also coming to be recognised as a platform for collective intelligence (Levy, 1997), a form of group intelligence that emerges from collaboration and competition among large numbers of individuals. Because of the close relationship between design, communication and virtual world technologies, there appears a strong possibility of using virtual worlds to harness collective intelligence for supporting upcoming ‚Äúdesign challenges on a much larger scale as we become an increasingly global and technological society‚Äů (Maher et al, 2010), beyond the current support for small-scale collaborative design teams. Collaborative design is relatively well studied and is characterised by small-scale, carefully structured design teams, usually comprising design professionals with a good understanding of the design task at hand. All team members are generally motivated and have the skills required to structure the shared solution space and to complete the design task. In contrast, collective design (Maher et al, 2010) is characterised by a very large number of participants ranging from professional designers to design novices, who may need to be motivated to participate, whose contributions may not be directly utilised for design purposes, and who may need to learn some or all of the skills required to complete the task. Thus the facets of virtual worlds required to support collective design differ from those required to support collaborative design. Specifically, in addition to design, communication and artificial intelligence tools, various interpretive, mapping and educational tools together with appropriate motivational and reward systems may be required to inform, teach and motivate virtual world users to contribute and direct their inputs to desired design purposes. Many of these world facets are well understood by computer game developers, as level systems, quests or plot and achievement/reward systems. This suggests the possibility of drawing on or adapting computer gaming technologies as a basis for harnessing collective intelligence in design. Existing virtual worlds that permit open-ended design ‚Äě such as Second Life and There ‚Äě are not specifically game worlds as they do not have extensive level, quest and reward systems in the same way as game worlds like World of Warcraft or Ultima Online. As such, while Second Life and There demonstrate emergent design, they do not have the game-specific facets that focus users towards solving specific problems required for harnessing collective intelligence. However, a new massively multiplayer virtual world is soon to be released that combines open-ended design tools with levels, quests and achievement systems. This world is called Lego Universe (www.legouniverse.com). This paper presents technology spaces for the facets of virtual worlds that can contribute to the support of collective intelligence in design, including design and modelling tools, communication tools, artificial intelligence, level system, motivation, governance and other related facets. We discuss how these facets support the design, communication, motivational and educational requirements of collective intelligence applications. The paper concludes with a case study of Lego Universe, with reference to the technology spaces defined above. We evaluate the potential of this or similar tools to move design beyond the individual and small-scale design teams to harness large-scale collective intelligence. We also consider the types of design tasks that might best be addressed in this manner.
keywords collective intelligence, collective design, virtual worlds, computer games
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2011_066
id caadria2011_066
authors Merrick, Kathryn; Ning Gu, Muhammad Niazi and Kamran Shafi
year 2011
title Motivation, cyberworlds and collective design
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 697-706
doi https://doi.org/10.52842/conf.caadria.2011.697
summary Collaborative design is characterised by small-scale, carefully structured, professional design teams. The increasing popularity of social computing and mass communication supported by cyberworlds suggests there is now also a strong possibility of design through mass participation, beyond small-scale, collaborative design scenarios. However to achieve collective intelligence in design, there is a need to motivate large groups of users to contribute constructively to design tasks. This paper studies different types of cyberworlds to classify the motivation profiles of their user bases. We compare these motivation profiles to those required for the emergence of collective intelligence and develop a list of technological requirements for cyberworlds to support collective intelligence and design.
keywords Collective intelligence; design; motivation; cyberworlds
series CAADRIA
email
last changed 2022/06/07 07:58

_id 44b1
authors Balas, Egon
year 1984
title On the Facial Structure of Scheduling Polyhedra
source 49 p., 6 p. of appendix : ill. Pittsburgh, PA: Design Research Center, Carnegie Mellon Univ., December, 1984. includes bibliography
summary A well-known job shop scheduling problem can be formulated as follows. Given a graph G with node set N and with directed and undirected arcs, find an orientation of the undirected arcs that minimizes the length of a longest path in G. The author treats the problem as a disjunctive program, without recourse to integer variables, and give a partial characterization of the scheduling polyhedron P(N), i.e., the convex hull of feasible schedules. In particular, he derives all the facets inducing inequalities for the scheduling polyhedron P(K) defined on some clique with node set K, and gives a sufficient condition for such inequalities to also induce facets of P(N). One of our results is that any inequality that induces a facet of P(H) for some HCK, also induces a facet of P(K). Another one is a recursive formula for deriving a facet inducing inequality with p positive coefficients from one with p-1 positive coefficients. The author also addresses the constraint identification problem, and gives a procedure for finding an inequality that cuts off a given solution to a subset of the constraints
keywords polyhedra, graphs, optimization, convex hull
series CADline
last changed 1999/02/12 15:07

_id ecaade2024_359
id ecaade2024_359
authors Cigáník, Ondřej; Sviták, Daniel; Sýsová, Kateřina; Tsikoliya, Shota; Vaško, Imrich
year 2024
title Strengthened Shells: Possibilities of conformal printing on curved surfaces in large scale 3D printing
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 9–16
doi https://doi.org/10.52842/conf.ecaade.2024.1.009
summary This paper investigates the potential impact of conformal filament layering on various 3D printed structures with the aim of enhancing or altering their properties. Currently, large scale 3D printed objects predominantly utilize vase-mode style prints, occasionally featuring more intricate internal structures resembling FDM infill patterns, yet typically produced in a single continuous extrusion, resulting in a single perimeter wall thickness. This research seeks to explore the advantages of layering additional material onto the outer perimeter of a print, leveraging the capabilities of 6-axis robots and conformal printing techniques. To empirically assess the efficacy of this technique, an experiment is designed involving the fabrication of a consistent one-layer domed shell on a supportive form, onto which additional layers, oriented differently and featuring various patterns, are subsequently applied. The resultant samples are subjected to tests measuring both their strength and visual attributes, generating data for further analysis and application.
keywords Additive Manufacturing, Robotic Fabrication, Conformal Printing, Non-planar, Recycled Material, Material Characteristics
series eCAADe
email
last changed 2024/11/17 22:05

_id 1229
authors Donath, D., Beetz, N., Grether, K., Kruijff, E., Petzold, F. and Seichter, H.
year 2001
title Cooling Factory, a concrete project to test new architectural applications for augmented reality
source Venetia Giagourta, Michael G. Strintzis (ed.): International Conference on Augmented, Virtual Environments and Three-Dimensional Imaging, Verlag Myconos, pp. 14-17
summary This paper will discuss possible fields of applications of AR/VR for revitalization of buildings from a user's perspective. Considerations are based on the real-world project "Cooling factory Gera". The project is founded by "Deutsche Forschungsgesellschaft (DFG)".
series other
email
last changed 2003/02/26 18:58

_id ddss9426
id ddss9426
authors Duijvestein, Kees
year 1994
title Integrated Design and Sustainable Building
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary In the international student-project "European Environmental Campus 91 TU Delft Dordrecht" 20 students from 13 European countries worked in september 1991, during three weeks on "EcologicalSketches for the Island of Dordrecht". They worked on four different scales: the region isle of Dordt / the district Stadspolders / the neighbourhood I the house and the block. The environmentaltheme's Energy, Water, Traffic & Noise, Landscape & Soil were together with spatial analyses combined with the different scales. This combination was organised following the scheme mentioned below. The characters stand for the students. During the first period they worked in research groups, during the last period more in design groups. For instance: student L works in the beginning with the students B, G and Q in the research group water. In the last period sheworks with K, M, N and 0 in the design group Neighbourhood. Those students worked earlier in the other research-groups and contribute now in the design-group their thematic environmental knowledge. The results were presented to the Dordrecht council, officials and press. In the next project in september and october 1993 we started earlier with the design groups. Ten Dutch and ten "Erasmus" students worked for six weeks on proposals for the Vinex location Wateringenthe Hague. Each morning they worked in the research groups each afternoon in the design groups. The research groups used the EcoDesign Tools, small applications in Excel on Apple Macintoshto quantify the environmental pressure.
series DDSS
last changed 2003/08/07 16:36

_id eaea2003_27-firsov
id eaea2003_27-firsov
authors Firsov, A.I.
year 2004
title Using Video and Computer Technologies for the Appreciation of the Integral Beauty of Architectural Objects
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 135-137
summary The paper is devoted to finding the aesthetic value of architectural objects and it is the continuation of works /1/ and /2/ executed before. In those the following concepts had been developed: a) dot estimation of beauty of an architectural object; b) function of beauty, c) integrated estimation of beauty of an architectural object. // The integrated estimation of beauty doesn t depend upon the choice of a point of observation and can serve as an objective measure of beauty of an architectural object.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id d5ac
authors Kalisperis, L.N., Otto, G., Muramoto, K., Gundrum, J.S., Masters, R. and Orland, B.
year 2002
title Virtual Reality/Space Visualization in Design Education: The VR-Desktop Initiative
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 64-71
doi https://doi.org/10.52842/conf.ecaade.2002.064
summary Although virtual reality (VR) is a fast-growing field, utilization of its potential within an affordable environment in the early years of architectural education has been limited. Currently, we are in the process of exploring the educational potential of virtual reality in the creation and understanding of space as a set of dynamic volumes that can be experienced. The VR-Desktop initiative is an effort to bring the salient features of projection-based VR to second-year architecture students in a way that is more generally accessible than the many canonical, first-generation, projection-based VR systems. The VR-Desktop has been implemented in the teaching of the architectural design studio in the second year of a fiveyear curriculum, as part of the physical architectural studio. Through the VR-Desktop system in the studio, students immediately start working in an immersive environment. They create space by manipulating solids and voids while evaluating the anthropometric relations of the proposed solution. The students are able to study and test conceptual details in a virtual environment from the very beginning of their architectural design project. In order to assess student perception of the usefulness of various system attributes for diverse tasks, we have begun a usability study. Thirty-five surveys were collected from the students who had used the lab during the two semesters for which the two-screen system was available. Preliminary observations indicate that within the architectural context, virtual reality techniques involving depth perception can convey relevant information to students more efficiently and with less misrepresentation than traditional techniques. This paper suggests that full field of view, motion, stereoscopic vision, and interactivity are possible components of the 3D visualization techniques that are necessary to enhance architectural education
series eCAADe
email
last changed 2022/06/07 07:52

_id 6cc5
authors Kowaltowski, D.C.C.K., Da Silva, V.G., Gouveia, A.P.S., Pina. G., Ruschel, R.C., Filho, F.B. and Fávero, E.
year 2000
title Ensino de Projeto com Inserçăo da Informática Aplicada: O curso de Arquitetura e Urbanismo da UNICAMP (Design Teaching with the Introduction of Applied Computing: The Architecture and Urbanism course at UNICAMP)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 352-354
summary This paper discusses the formal educational base of the Architecture course of the State University of Campinas, UNICAMP, which opened in 1999. Applied computing, thoerical content and technical aspects of design are principal educational elements of the course. The paper will show and discuss the structure of building up knowledge for design activities through drafting, applied computing and theory and practical design disciplines present in the course.
series SIGRADI
email
last changed 2016/03/10 09:54

_id eaea2003_23-kubinsky-kardos
id eaea2003_23-kubinsky-kardos
authors Kubinsky, B. and Kardos, P.
year 2004
title Completion of the Public Area of the Bratislava Main Station using Fine Art Components
source Spatial Simulation and Evaluation - New Tools in Architectural and Urban Design [Proceedings of the 6th European Architectural Endoscopy Association Conference / ISBN 80-227-2088-7], pp. 113-115
summary The project deals with supplementation of fine art components to the newly designed square in front of the main railway station and their integration into the public space to provide a good system functioning in the contemporary ground-floor level. Several students of Faculty of Architecture, Slovak University of Technology in Bratislava, have elaborated this idea under the leadership of B. Kubinsky with the technical support of P. Kardos during the years 2001 and 2002. The supplementation had been planned in two parts: first each student has designed his own object of art and created the model of his piece. Then, in the second part, the quality and relevance of each object was verified by the spatial endoscope in the laboratory of P. Kardos .
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id ga9917
id ga9917
authors Maia Jr., A., Valle, R. do, Manzolli, J. and Pereira, L.N.S.
year 1999
title Generative Polymodal Music Process
source International Conference on Generative Art
summary We present underlying ideas used to develop an Algorithmic Composition software named KYKLOS. It was designed to generate music based on generalised musical scales and modes. It is an interactive sonic device to be applied in composition as well in performance. The sonic output of the whole process can be described as generalised polymodal music since “synthetic scales” are generated by the algorithm. This environment can be used in a Computer Assisted Composition manner in order to generate MIDI files. On the other hand, it can equally be used as a performance environment in which a dynamic change of parameters enables a real time control of the sonic process. Recently, we advocated that several mathematical applications in Computer Music can be understood as Sound Functors [1]. In extension, we describe here a sound functor used to model scales and modes. As can be verified, part of early investigations on mathematical structures in music studied musical scales and modes using Combinatorics, Fibonacci Series and Golden Mean in order to understand compositional processes which use modal concepts. Using the Functor definition it is possible to enumerate n-scales as a sequence of integers. Each value in that sequence gives the distance (in half tones) between two consecutive tones. For example, the sequence 3:2:2:3 is interpreted as a pentatonic scale C-Eb-F-G-Bb, and as defined above it is a C mode. So, if we apply cyclical permutations, (n-1)-sequences of numbers should be interpreted as n-modes of tones. Our algorithmic implementation is described briefly. A n-mode is defined as an array with n-1 integers [a1, a2, ...an-1]. Each array generated at k-th step can be read as a number a1a2a3 ....an-1 in decimal representation, where ai is a integer between 1 and 9. We denote the number obtained at k-th step as (a1a2a3 ...an-1)(k) . The rules to implement the algorithm are the following:1) V0 = (1, 1, 1, 1 ......,1) (initial n-mode)2) ? ai ? 11 with i= 1, 2...n-1 (octave range constraint)3) Vk = (a1a2a3 ...an-1)(k) < (b1b2b3 ...bn-1)(k+1) = Vk+1 where aj ?bj , 1? j ? n-1.4) Vmax = (13 – n, 1, 1, ...,1)In this paper we start with a theoretical view and an introduction on the algorithmic mechanism used. Further, we present a concept of man ? machine interaction used to create the composition environment. We also describe the compositional graphic interface developed and general functions of the system. Finally there is a set of music examples generated by KYKLOS as MIDI files.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 790a
authors Noble, D., Kensek, K. and Keating, G.
year 2000
title Stereoscopic Imaging in Architectural Design: A Communications Experiment
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 216-216
summary Stereoscopic imagery is finding new uses with the growth of computer applications in design and entertainment endeavors. This can be demonstrated in part by the substantial interest in immersive virtual reality systems. Since visual communication is an important tool for describing projects and stereoscopic imagery is receiving considerable attention in software development , an experiment was conducted to examine some of the characteristics of architectural communication using stereoscopic methods.
series SIGRADI
email
last changed 2016/03/10 09:56

_id 899f
authors Papamichael, K., Pal, V., Bourassa, N., Loffeld, J. and Capeluto, I.G.
year 2000
title An Expandable Software Model for Collaborative Decision-Making During the Whole Building Life Cycle
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 19-28
doi https://doi.org/10.52842/conf.acadia.2000.019
summary Decisions throughout the life cycle of a building, from design through construction and commissioning to operation and demolition, require the involvement of multiple interested parties (e.g., architects, engineers, owners, occupants and facility managers). The performance of alternative designs and courses of action must be assessed with respect to multiple performance criteria, such as comfort, aesthetics, energy, cost and environmental impact. Several stand-alone computer tools are currently available that address specific performance issues during various stages of a building’s life cycle. Some of these tools support collaboration by providing means for synchronous and asynchronous communications, performance simulations, and monitoring of a variety of performance parameters involved in decisions about a building during building operation. However, these tools are not linked in any way, so significant work is required to maintain and distribute information to all parties. In this paper we describe a software model that provides the data management and process control required for collaborative decision-making throughout a building’s life cycle. The requirements for the model are delineated addressing data and process needs for decision making at different stages of a building’s life cycle. The software model meets these requirements and allows addition of any number of processes and support databases over time. What makes the model infinitely expandable is that it is a very generic conceptualization (or abstraction) of processes as relations among data. The software model supports multiple concurrent users, and facilitates discussion and debate leading to decision-making. The software allows users to define rules and functions for automating tasks and alerting all participants to issues that need attention. It supports management of simulated as well as real data and continuously generates information useful for improving performance prediction and understanding of the effects of proposed technologies and strategies.
keywords Decision Making, Integration, Collaboration, Simulation, Building Life Cycle, Software.
series ACADIA
email
last changed 2022/06/07 08:00

_id ecaade2017_089
id ecaade2017_089
authors Petrš, Jan, Havelka, Jan, Florián, Miloš and Novák, Jan
year 2017
title MoleMOD - On Design specification and applications of a self-reconfigurable constructional robotic system
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 159-166
doi https://doi.org/10.52842/conf.ecaade.2017.2.159
summary The paper explores the use of in-house developed self-reconfigurable modular robotic system in civil construction activities and investigates a concept where an arbitrary Civil Engineering structure or a daily use industrial product are self-assembled from a number of self-reconfigurable composite blocks. The system extends current range of modular robot systems (mDrs) where autonomous modules self-assemble into a wide variety of forms. However, contrary to conventional mDrs, MoleMOD has not mechatronic actuating parts permanently fixed to each individual module. The MoleMOD actuators are separable and operate inside the modules, tight them together or relocate them to required configuration. It significantly reduces number of expensive mechatronics parts and the environment the actuators operate. Although MoleMOD focuses on architecture, it can take over other mDrs tasks as research and rescue. This paper describes properties, advantages, foreseen applications, and basic design specifications of the second generation prototype.
keywords Modular robotic systems; Mobile robotic systems; Adaptive architecture; MoleMOD; Smart materials and structures; Multi-robot systems
series eCAADe
email
last changed 2022/06/07 08:00

_id e1cb
authors Reddy, M., Leclerc, Y.G., Iverson, L., Bletter, N. and Vidimce, K.
year 1998
title Modeling the Digital Earth in VRML
source Technical Note no. 559, SRI International, Menlo Park
summary This paper describes the representation and navigation of large, multi-resolution, georeferenced datasets in VRML97. This requires resolving nontrivial issues such as how to represent deep level of detail hierarchies efficiently in VRML; how to model terrain using geographic coordinate systems instead of only VRML's Cartesian representation; how to model georeferenced coordinates to sub-meter accuracy with only single-precision floating point support; how to enable the integration of multiple terrain datasets for a region, as well as cultural features such as buildings and roads; how to navigate efficiently around a large, global terrain dataset; and finally, how to encode metadata describing the terrain. We present solutions to all of these problems. Consequently, we are able to visualize geographic data in the order of terabytes or more, from the globe down to millimeter resolution, and in real-time, using standard VRML97.
series report
last changed 2003/04/23 15:50

_id ecaade2012_015
id ecaade2012_015
authors Schneider, Sven ; König, Reinhard
year 2012
title Exploring the Generative Potential of Isovist Fields: The Evolutionary Generation of Urban Layouts based on Isovist Field Properties
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 1 / ISBN 978-9-4912070-2-0, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 355-363
doi https://doi.org/10.52842/conf.ecaade.2012.1.355
wos WOS:000330322400036
summary Isovists and isovist fi elds can be used to numerically capture the visual properties of spatial confi gurations (e.g. fl oor plans or urban layouts). To a certain degree these properties allow one to make statements about how spaces affect people. The question that serves as the starting point of this study is to examine whether spatial confi gurations ca n generated on the basis of these properties. This question is explored using an experimental approach for the computer-based generation of two-dimensional urban layouts. The spatial arrangements of two-dimensional elements (building-footprints) within a given boundary is optimised in terms of the desired isovist fi eld properties by means of an evolutionary strategy. The paper presents the results of this optimisation and discusses the advantages of this method compared with pattern books as commonly used in architecture.
keywords Spatial Configuration; Generative Design; Evolutionary Strategy; Isovists; Visibility Based Design
series eCAADe
email
last changed 2022/06/07 07:57

_id cf2011_p109
id cf2011_p109
authors Abdelmohsen, Sherif; Lee Jinkook, Eastman Chuck
year 2011
title Automated Cost Analysis of Concept Design BIM Models
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 403-418.
summary AUTOMATED COST ANALYSIS OF CONCEPT DESIGN BIM MODELS Interoperability: BIM models and cost models This paper introduces the automated cost analysis developed for the General Services Administration (GSA) and the analysis results of a case study involving a concept design courthouse BIM model. The purpose of this study is to investigate interoperability issues related to integrating design and analysis tools; specifically BIM models and cost models. Previous efforts to generate cost estimates from BIM models have focused on developing two necessary but disjoint processes: 1) extracting accurate quantity take off data from BIM models, and 2) manipulating cost analysis results to provide informative feedback. Some recent efforts involve developing detailed definitions, enhanced IFC-based formats and in-house standards for assemblies that encompass building models (e.g. US Corps of Engineers). Some commercial applications enhance the level of detail associated to BIM objects with assembly descriptions to produce lightweight BIM models that can be used by different applications for various purposes (e.g. Autodesk for design review, Navisworks for scheduling, Innovaya for visual estimating, etc.). This study suggests the integration of design and analysis tools by means of managing all building data in one shared repository accessible to multiple domains in the AEC industry (Eastman, 1999; Eastman et al., 2008; authors, 2010). Our approach aims at providing an integrated platform that incorporates a quantity take off extraction method from IFC models, a cost analysis model, and a comprehensive cost reporting scheme, using the Solibri Model Checker (SMC) development environment. Approach As part of the effort to improve the performance of federal buildings, GSA evaluates concept design alternatives based on their compliance with specific requirements, including cost analysis. Two basic challenges emerge in the process of automating cost analysis for BIM models: 1) At this early concept design stage, only minimal information is available to produce a reliable analysis, such as space names and areas, and building gross area, 2) design alternatives share a lot of programmatic requirements such as location, functional spaces and other data. It is thus crucial to integrate other factors that contribute to substantial cost differences such as perimeter, and exterior wall and roof areas. These are extracted from BIM models using IFC data and input through XML into the Parametric Cost Engineering System (PACES, 2010) software to generate cost analysis reports. PACES uses this limited dataset at a conceptual stage and RSMeans (2010) data to infer cost assemblies at different levels of detail. Functionalities Cost model import module The cost model import module has three main functionalities: generating the input dataset necessary for the cost model, performing a semantic mapping between building type specific names and name aggregation structures in PACES known as functional space areas (FSAs), and managing cost data external to the BIM model, such as location and construction duration. The module computes building data such as footprint, gross area, perimeter, external wall and roof area and building space areas. This data is generated through SMC in the form of an XML file and imported into PACES. Reporting module The reporting module uses the cost report generated by PACES to develop a comprehensive report in the form of an excel spreadsheet. This report consists of a systems-elemental estimate that shows the main systems of the building in terms of UniFormat categories, escalation, markups, overhead and conditions, a UniFormat Level III report, and a cost breakdown that provides a summary of material, equipment, labor and total costs. Building parameters are integrated in the report to provide insight on the variations among design alternatives.
keywords building information modeling, interoperability, cost analysis, IFC
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 224HOMELOGIN (you are user _anon_927726 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002