CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 9138

_id fc1f
authors Zhang, Z., Tsou, J.-Y. and Hall, T.W.
year 2001
title Web-Based Virtual-Reality for Collaboration on Urban Visual Environment Assessment
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 781-794
summary This research aims to facilitate public participation in urban landscape visual assessment (ULVA). To support virtual collaboration in ULVA, it is desirable to provide both quantitative analysis and 3D simulation over the Internet. Although the rendering of urban models in common web browser plug-ins often lacks vividness compared with native workstation applications, the integration of VRML modeling and Java programming proves effective in sharing and rendering urban scenes through a familiar web interface. The ULVA simulation supports not only static scene rendering, but also interactive functional simulations. They include the viewpoint setting up, view corridor and panorama generation. Although popular VRML viewers such as CosmoPlayer provide similar functions, users are often disoriented by the interface. The obfuscation inhibits people’s immersion in the virtual urban environment and makes the assessment inconvenient. To eliminate such disorientation and improve users’ feelings of immersion, we integrate both a two-dimensional map and a three-dimensional model of the urban area in the user interface. The interaction between 2D map and 3D world includes the matching of avatar positions, visualization of avatar posture, and the setting up of viewpoints and view corridors. To support a web-based urban planning process, the system adopts client/server architecture. The city map is managed by a specific database management system (DBMS) on the server side. Users may retrieve information for various “what if” simulations. The system automatically remodels the virtual environment to respond to users’ requests.
keywords Geographic Information Systems, Internet, Urban Landscape, Visual Assessment, Virtual Reality
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ecaade2024_199
id ecaade2024_199
authors Zhong, Ximing; Liang, Jiadong; Li, Yingkai
year 2024
title Building-Agent: A 3D generation agent framework integrating large language models and graph-based 3D generation model
doi https://doi.org/10.52842/conf.ecaade.2024.2.291
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 291–300
summary Large language models (LLMs) possess powerful intelligence, demonstrating unprecedented potential in AI-driven architectural design. While LLMs can understand design tasks, they lack the reasoning capability from language to three-dimensional (3D) architectural models. This paper proposes a novel 3D building generative agent framework, Building-Agent, which combines LLMs' decision-making capabilities with Graph Neural Networks (GNNs) generative abilities. Experiments utilize real design briefs and site constraints to test the building agent's task-processing capabilities. The results demonstrate that the Building-Agent can accurately predict different site layout outcomes and achieve high task completion rates. Furthermore, it enables interactive 3D building layout iteration through multi-step natural language instructions. The Building-Agent's ability to comprehend and reason about 3D spatial layouts, based on the graph representations of 3D models in the modeling engine and the requirements of natural language inputs, showcases its potential to accomplish tasks with initial proficiency. Compared to previous 3D generative models that rely on human decision-making for inputting spatial constraints, the Building-Agent paves the way for AI to comprehend and complete 3D design tasks autonomously, promising a transformative impact on AI and architectural design.
keywords Building-Agent, Large Language Model, Graph Generation Model, Language Comprehending, 3D Spatial Reasoning, 3D Cognitive Ability
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2024_261
id ecaade2024_261
authors Zhong, Yuqin; Tan, Zhi Sheng; Mavros, Panagiotis; Hölscher, Christoph; Tunçer, Bige
year 2024
title Estimating Relative Pedestrian Crowd Distribution: A visibility-graph-based analysis workflow for malls during early design stage
doi https://doi.org/10.52842/conf.ecaade.2024.2.433
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 433–442
summary This paper introduces a visibility-graph-based workflow for early stages of architectural design, aimed at estimating relative pedestrian crowd distribution in shopping malls. Traditional methods like Agent-Based Modeling (ABM) and Space Syntax analysis face challenges in early design phases due to extensive data or configuration needs and lack of detail respectively. Our approach uses visibility graph as the foundation and generates visit probabilities and Chains of Activities (COAs) from empirical studies, balancing accuracy, accessibility and efficiency. The workflow's integration within designers’ familiar design interface allows for rapid prototyping and assessment of design iterations, making it a practical tool. Validation through a case study in a shopping mall in Singapore demonstrates the workflow's accuracy, with results showing strong similarity to both ABM and observed data, but with significantly less time and resource demands. This workflow offers a novel solution for early-stage design, providing a swift and accurate means to evaluate pedestrian dynamics and optimize design layouts.
keywords Pedestrian Crowd Analysis, Mixed-use Building, Shopping Mall Design, Visibility Graph Analysis, Agent-based Modelling, Evidence-based Design
series eCAADe
email
last changed 2024/11/17 22:05

_id ddss2008-03
id ddss2008-03
authors Zhu, Wei and Harry Timmermans
year 2008
title Incorporating Principles of Bounded Rationality intoModels of Pedestrian Shopping BehaviorTheory and Example
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary The modeling and simulation of pedestrian behavior has been dominantly relied on rational choice models in which pedestrians are assumed to be capable of processing a large number of choice alternatives and trade off attribute utilities. In reality, however, pedestrian behaivor shows the evidence of bounded rationality. They simplify the decision problem by considering a limited number of factors as well alternatives, using heuristics to arrive at satisfactory as opposed to optimal choices. Incorporating principles of bounded rationality in pedestrian modeling will benefit the understanding of individual decision processes and planning practice. This paper proposes an approach that models the cognitive processes such as filtering factors, constructing preference structures, deriving heterogeneous decision heuristics, and selecting decision strategies. The approach is also exemplified through estimating the model on pedestrian store patronage behavior data, collected in a shopping center in Shanghai, China. The results show the estimated probabilities of usage of decision strategies and the sequences of factor search. Compared with the conventional multinomial logit models, the results indicate the statistical advantages of the new approach.
keywords Bounded rationality, decision heuristics, heterogeneity, pedestrian, store patronage decision
series DDSS
last changed 2008/09/01 17:06

_id ecaade2020_215
id ecaade2020_215
authors Zhu, Yuehan, Fukuda, Tomohiro and Yabuki, Nobuyoshi
year 2020
title Integrated Co-designing Using Building Information Modeling and Mixed Reality with Erased Backgrounds for Stock Renovation
doi https://doi.org/10.52842/conf.ecaade.2020.1.153
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 153-160
summary The stock renovation has become an important area of study. As customized design becomes increasingly popular, the design methods with occupants' participation are increasingly valued. The designers need an intuitive, understandable design method that allows non-professional occupants can also participate in the design process. Therefore, the proposed system explores the applicability of integrating the Building Information Modeling (BIM) model into the Mixed Reality (MR) environment to display realistic and interactive design plans. Occupants who involved in the renovation design wearing head mounted display (HMD) would experience the same MR environment. All of them can use gestures to interact with each other and control all the virtual structures and objects. This MR experience can help users to better understand other's intentions, and they can evaluate the design plans more easily. This paper will introduce a prototype of the integrated co-designing system using multiple HMDs connected in a local area network (LAN).
keywords Mixed Reality; Diminished Reality; Building Information Modeling; Co-Designing; Stock Renovation
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2021_167
id ecaade2021_167
authors Zhu, Zhelun, Coraglia, Ugo Maria, Simeone, Davide and Fioravanti, Antonio
year 2021
title Spaces Identity Evaluation aNd Assignment - SIENA - A duck typing approach for automatic recognition and semantic enrichment of architectural spaces
doi https://doi.org/10.52842/conf.ecaade.2021.2.341
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 341-350
summary This paper presents the development of SIENA - Space Identity Evaluation aNd Assignment - based on duck typing for automatic recognition and semantic enrichment of the architectural spaces. This method is known in computer science as a form of abductive reasoning and leverages on the observable features of an object in order to establish its recognition. As result, the spatial identity is object-oriented and can be dynamically defined. In this research, the duck typing approach has been achieved with the support of BIM methodology and graph database. The former allows information-based modeling of an architectural project while the latter makes possible the representation of the knowledge along with their relationships. Consequently, this research may have many possible applications, especially as a valid design support tool in the very first design stages. Furthermore, an efficient spatial identity detection could contribute to the development of further human-machine interactions and therefore a possible optimization of the design process.
keywords Semantics; Graph database; Duck typing; Space identification
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia23_v2_532
id acadia23_v2_532
authors Zhuang, Xinwei; Huang, Zixun; Zeng, Wentao; Caldas, Luisa
year 2023
title Encoding Urban Ecologies: Automated Building Archetype Generation through Self-Supervised Learning for Energy Modeling
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 532-541.
summary As the global population and urbanization expand, the building sector has emerged as the predominant energy consumer and carbon emission contributor. The need for inno- vative Urban Building Energy Modeling grows, yet existing building archetypes often fail to capture the unique attributes of local buildings and the nuanced distinctions between different cities, jeopardizing the precision of energy modeling. This paper presents an alternative tool employing self-supervised learning to distill complex geometric data into representative, locale-specific archetypes. This study attempts to foster a new paradigm of interaction with built environments, incorporating local parameters to conduct bespoke energy simulations at the community level. The catered archetypes can augment the precision and applicability of energy consumption modeling at the different scales across diverse building inventories. This tool provides a potential solution that encourages the exploration of emerging local ecologies. By integrating building envelope characteristics and cultural granularity into the building archetype generation process, we seek a future where architecture and urban design are intricately interwoven with the energy sector in shaping our built environments.
series ACADIA
type paper
email
last changed 2024/12/20 09:13

_id ijac202321205
id ijac202321205
authors Zhuang, Xinwei; Ju, Yi; Yang, Allen; Caldas, Luisa
year 2023
title Synthesis and generation for 3D architecture volume with generative modeling
source International Journal of Architectural Computing 2023, Vol. 21 - no. 2, 297–314
summary Generative design in architecture has long been studied, yet most algorithms are parameter-based and require explicit rules, and the design solutions are heavily experience-based. In the absence of a real understanding of the generation process of designing architecture and consensus evaluation matrices, empirical knowledge may be difficult to apply to similar projects or deliver to the next generation. We propose a workflow in the early design phase to synthesize and generate building morphology with artificial neural networks. Using 3D building models from the financial district of New York City as a case study, this research shows that neural networks can capture the implicit features and styles of the input dataset and create a population of design solutions that are coherent with the styles. We constructed our database using two different data representation formats, voxel matrix and signed distance function, to investigate the effect of shape representations on the performance of the generation of building shapes. A generative adversarial neural network and an auto decoder were used to generate the volume. Our study establishes the use of implicit learning to inform the design solution. Results show that both networks can grasp the implicit building forms and generate them with a similar style to the input data, between which the auto decoder with signed distance function representation provides the highest resolution results.
keywords data-driven design, 3D deep learning, architecture morphology representation, auto decoder, generative adversarial neural network
series journal
last changed 2024/04/17 14:30

_id 4f2f
authors Zube, E. H., Simcox, D. E. and Law, C. S.
year 1987
title Perceptual landscape simulations history and prospect
source Landscape Journal 6, pp. 62-80
summary Contributed by Susan Pietsch (spietsch@arch.adelaide.edu.au)
keywords 3D City Modeling, Development Control, Design Control
series journal paper
last changed 2003/05/15 21:45

_id cf2017_333
id cf2017_333
authors Çavuso?lu, Ömer Halil; Çagdas, Gülen
year 2017
title Why Do We Need Building Information Modeling (BIM) in Conceptual Design Phase?
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 333.
summary Many researchers point out that, in conceptual design, many significant decisions are taken to directly affect functional qualities, the performance of the building, aesthetics, and the relationship of the building with the natural environment and climate, even if there is no certain and valid information to create and obtain satisfactory design solution. The focus of the study is to observe and explore how BIM can be used in conceptual design phase and also to investigate how and how effectively BIM can help architects during the process. To develop an understanding to these aims, a case study implementation within sketching and BIM environments which consists of three stages was carried out in an educational setting by three participants who are undergraduate degree students of Faculty of Architecture. Qualitative research methods were used as research methodology and the findings of the implementation were discussed with prominent related literature in the same context.
keywords BIM, Building Information Modeling, Conceptual Design Phase, Conceptual Design Analysis, Energy Modeling
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ijac20053106
id ijac20053106
authors özener, Ozan önder; Akleman, Ergun; Srinivasan, Vinod
year 2005
title Interactive Rind Modeling for Architectural Design
source International Journal of Architectural Computing vol. 3 - no. 1, 93-106
summary The paper presents a new modeling technique for architectural design. Rind modeling provides for the easy creation of surfaces resembling peeled and punctured rinds. We show how the method's two main steps of creation of a shell or crust and then opening holes in the crust by punching or peeling can be encapsulated into a real time semi-automatic interactive algorithm.The rind modeling method allows us to develop a user-friendly tool for designers and architects. The new tool extends the abilities of polygonal modeling and allows designers to work on structured and consistent models for architectural design purposes. Rind modeling gives architects and designers a processing flexibility. It can be used in conceptual modeling during the early design phase. It can also be efficiently used for creating variety of shell structures for architectural design.
series journal
more http://www.multi-science.co.uk/ijac.htm
last changed 2007/03/04 07:08

_id 1838
authors Akleman, E., Chen, J. and Meric, B.
year 2000
title Intuitive and Effective Design of Periodic Symmetric Tiles
doi https://doi.org/10.52842/conf.acadia.2000.123
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 123-127
summary This paper presents a new approach for intuitive and effective design of periodic symmetric tiles. We observe that planar graphs can effectively represent symmetric tiles and graph drawing provides an intuitive paradigm for designing symmetric tiles. Moreover, based on our theoretical work to represent hexagonal symmetry by rectangular symmetry, we are able to present all symmetric tiles as graphs embedded on a torus and based on simple modulo operations. This approach enables us to develop a simple and efficient algorithm, which has been implemented in Java. By using this software, designers, architects and artists can create interesting symmetric tiles directly on the web. We also have designed a few examples of symmetric tiles to show the effectiveness of the approach.
series ACADIA
last changed 2022/06/07 07:54

_id acadia19_490
id acadia19_490
authors Alvarez, Martín; Wagner, Hans Jakob; Groenewolt, Abel; Krieg, Oliver David; Kyjanek, Ondrej; Sonntag, Daniel; Bechert, Simon; Aldinger, Lotte; Menges, Achim; Knippers, Jan
year 2019
title The Buga Wood Pavilion
doi https://doi.org/10.52842/conf.acadia.2019.490
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 490-499
summary Platforms that integrate developments from multiple disciplines are becoming increasingly relevant as the complexity of different technologies increases day by day. In this context, this paper describes an integrative approach for the development of architectural projects. It portrays the benefits of applying such an approach by describing its implementation throughout the development and execution of a building demonstrator. Through increasing the agility and extending the scope of existing computational tools, multiple collaborators were empowered to generate innovative solutions across the different phases of the project´s cycle. For this purpose, novel solutions for planar segmented wood shells are showcased at different levels. First, it is demonstrated how the application of a sophisticated hollow-cassette building system allowed the optimization of material use, production time, and mounting logistics due to the modulation of the parameters of each construction element. Second, the paper discusses how the articulation of that complexity was crucial when negotiating between multiple professions, interacting with different contractors, and complying with corresponding norms. Finally, the innovative architectural features of the resulting building are described, and the accomplishments are benchmarked through comparison with typological predecessor.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ijac20108401
id ijac20108401
authors Attar, Ramtin; Robert Aish, Jos Stam, et al.
year 2010
title Embedded Rationality: A Unified Simulation Framework for Interactive Form Finding
source International Journal of Architectural Computing vol. 8 - no. 4, p. 39
summary This paper describes embedded rationality as a method for implicitly combining fabrication constraints into an interactive framework for conceptual design. While the concept of ‘embedded rationality’ has been previously discussed in the context of a parametric design environment, we employ this concept to present a novel framework for dynamic simulation as a method for interactive form-finding. By identifying categories of computational characteristics, we present a unified physics-solver that generalizes existing simulations through a constraint-based approach. Through several examples we explore conceptual approaches to a fixed form where the resulting effects of interacting forces are produced in real-time. Finally, we provide an example of embedded rationality by examining a constraint-based model of fabrication rationale for a Planar Offset Quad (POQ) panelization system.
series journal
last changed 2019/05/24 09:55

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id 00f3
authors Baybars, Ilker and Eastman, Charles M.
year 1979
title Generating the Underlying Graphs for Architectural Arrangements
source 10 p. : ill. Pittsburgh: School of Urban and Public Affairs, Carnegie Mellon University, April, 1979. Research report No.79. Includes bibliography
summary The mathematical correspondence to a floorplan is a Metric Planar Graph. Several methods for systematic direct generation of metric planar graphs have been developed including polyominoes, March and Matela and shape grammars. Another approach has been to develop a spatial composition in two separate steps. The first step involves discrete variables, and consists of enumerating a defined set of non-metric planar graphs. The second step involves spatial dimensions, e.g. continuous variables, and maps the graphs onto the Euclidean plane, from which a satisfactory or optimal one is selected. This paper focusses on the latter 2-step process. It presents a general method of solving the first step, that is the exhaustive enumeration of a set of planar graphs. The paper consists of three sections: The first section is an introduction to graph theory. The second section presents the generation of maximal planar graphs. The last section summarizes the presentation and comments on the appropriateness of the method
keywords graphs, floor plans, architecture, design, automation, space allocation
series CADline
email
last changed 2003/05/17 10:15

_id ijac20097101
id ijac20097101
authors Boulaassal, H.; Landes, T.; Grussenmeyer, P.
year 2009
title Automatic Extraction of Planar Clusters and their Contours on Building Facades Recorded by Terrestrial Laser Scanner
source International Journal of Architectural Computing vol. 7 - no. 1, 1-20
summary Since 3D city models need to be realistic not only from a bird's point of view, but also from a pedestrian's point of view, the interest in the generation of 3D façade models is increasing. This paper presents two successive algorithms for automatically segmenting building façades scanned by Terrestrial Laser Scanner (TLS) into planar clusters and extracting their contours. Since majority of façade components are planes, the topic of automatic extraction of planar features has been studied. The RANSAC algorithm has been chosen among numerous methods. It is a robust estimator frequently used to compute model parameters from a dataset containing outliers, as it occurs in TLS data. Nevertheless, the RANSAC algorithm has been improved in order to extract the most significant planar clusters describing the main features composing the building façades. Subsequently, a second algorithm has been developed for extracting the contours of these features. The innovative idea presented in this paper is the efficient way to detect the points composing the contours. In order to evaluate the performances of both algorithms, they have successively been applied on samples with different characteristics, i.e. densities, types of façades and size of architectural details. Finally, a quality evaluation based on the comparison of planar clusters and contours obtained manually has been carried out. The results prove that the proposed algorithms deliver qualitative as well as quantitative satisfactory results and confirm that both algorithms are reliable for the forthcoming 3D modelling of building façades.
series journal
last changed 2009/06/23 08:07

_id ijac20108102
id ijac20108102
authors Budroni, Angela; Jan Boehm
year 2010
title Automated 3D Reconstruction of Interiors from Point Clouds
source International Journal of Architectural Computing vol. 8 - no. 1, 55-73
summary We present a new technique for the fully automated 3D modelling of indoor environments from a point cloud. The point cloud is acquired with several scans and is afterwards processed in order to segment planar structures, which have a noticeable architectural meaning (floor, ceiling and walls) in the interior. The basic approach to data segmentation is plane sweeping based on a hypothesis-and-test strategy. From the segmentation results, the ground plan is created through cell decomposition by trimming the two-dimensional ground space using half-space primitives. An extension in height of the ground contours makes the generation of the 3D model possible. The so-reconstructed indoor model is saved in CAD format for analysis and further applications or, simply, as a record of the interior geometry.
series journal
last changed 2019/05/24 09:55

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id caadria2023_286
id caadria2023_286
authors Choo, Thian-Siong, Wang, Bryan, Berboso, Danielle, Ng, Shalynn and Koh, Lee Jun Rae
year 2023
title Computational Design for Additive Manufacturing of a Doubly Curved Gyroid Lattice Wall
doi https://doi.org/10.52842/conf.caadria.2023.2.271
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 271–280
summary Additive Manufacturing (AM) for large format building components is becoming popular. AM has allowed architects and engineers to rethink the process of manufacturing building components through lightweighting strategies associated with the processes of AM. AM allows just-in-time production of components which reduces the need for large storage space and minimizes the carbon footprint of the supply chain by bringing the production closer to the actual construction site. However, the feasibility and efficiency of large format fused filament fabrication (FFF) for large building components are still unclear. This paper presents a Computational Design for Additive Manufacturing (CDfAM) workflow of a doubly curved gyroid lattice wall as part of the research on the technological affordance of large format planar FFF for a doubly curved gyroid lattice wall and the feasibility of 3D printing without support structures.
keywords Design for Additive Manufacturing, Fused Filament Fabrication, Large-Scale Additive Manufacturing, Computational Design, Lightweighting
series CAADRIA
email
last changed 2023/06/15 23:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 456HOMELOGIN (you are user _anon_767112 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002