CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 15291

_id 69aa
authors Kaku, Bharat K. and Thompson, Gerald L.
year 1983
title An Exact Algorithm for the General Quadratic Assignment Problem
source December, 1983. 18 P. includes bibliography
summary The authors develop an algorithm that is based on the linearizaition and decomposition of a general Quadratic Assignment Problem of size n into n2 Linear Assignment problems of size (n-1). The solutions to these subproblems are used to calculate a lower bound for the original problem, and this bound is then used in an exact branch and bound procedure. These subproblems are similar to the 'minors' defined by Lawler, but allow calculation of tighter bounds. Computational experience is given for solution to optimization of problems of size up to n = 10
keywords algorithms, branch-and-bound, operations research, linear programming
series CADline
last changed 2003/06/02 10:24

_id ascaad2023_032
id ascaad2023_032
authors Kalak, Dogan; Aydin, Serdar; Özer, Derya
year 2023
title Use of Generative Systems to Create Semi-Public Spaces in Contemporary Neighborhood Texture
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 306-323.
summary Cul-de-sacs are examined together with the urban reading in Siverek. Studying cul-de-sacs is instrumental to understand the morphology of Islamic cities. Cul-de-sacs provide a buffer zone between main roads and houses. For this reason, both the privacy phenomenon, which is one of the important issues for Islam, and the safe space need of the residents are important spatial elements. Until 1968, the city of Siverek developed organically within a compact texture of narrow and curvilinear streets, open courtyards, and a adjacent high-walled residences. In this texture, many semi-private cul-de-sacs have an organic form, which is one of the critical spatial elements of the city. Residential walls or courtyard walls form the natural line of traditional streets. In this study, typological analyses of cul-de-sacs were made, and form grammar, a productive method used to analyze architectural language, is included. It aims to examine the relationship between residential settlement and street using the data set created with shape grammars and to make urban propositions for neighbourhood structures in the context of a cul-de-sac using L-systems in the next step. Some parameters have been determined in forming cul-de-sacs that form the urban texture. These parameters were transferred to the model using digital tools. A method thought to be used in urban production has been put forward. The most important reference of this method is dead-end streets.
series ASCAAD
email
last changed 2024/02/13 14:34

_id caadria2018_343
id caadria2018_343
authors Kalantar, Negar and Borhani, Alireza
year 2018
title Informing Deformable Formworks - Parameterizing Deformation Behavior of a Non-Stretchable Membrane via Kerfing
doi https://doi.org/10.52842/conf.caadria.2018.2.339
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 339-348
summary The process for constructing freeform buildings composed of many non-repetitive shapes and waste-free formwork systems remains relatively unexplored. This research reviews a method for fabricating complex double-curved shapes without utilizing single-use formworks. This work answers questions regarding the manufacturing of these shapes in an environmentally-friendly and economic fashion. The proposed method, called a "transformative formwork," could replace state-of-the-art CNC-milled molds and is potentially suitable for large-scale construction. The transformative formwork uses a stretchable membrane or "interpolation layer" that can be manipulated into any curved surface by using vertical bars capable of being rearranged into different heights. Here, to accurately generate most of the smooth, double-curved surfaces, laser kerfing is used for bending interpolation layer into almost any complex shape. A parametric model simplifies local or global changes to the density of the kerfing patterns, modifying the deformation behavior of the layer. Several kerfed interpolation layers produced for four transformative formworks showed that the application of this method.
keywords Transformative Formwork, Interpolation Layer, Relief-cut Patterns, Positive & Negative Gaussian Curvatures, Interlocking Archimedean Spiral-Patterns, Kerfing
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2017_165
id caadria2017_165
authors Kalantar, Negar, Borhani, Alireza and Akleman, Ergun
year 2017
title A Simple Fabrication System for Unfolding Complex Architectural Surfaces
doi https://doi.org/10.52842/conf.caadria.2017.767
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 767-776
summary In this research, we explore the implementation of panels with a single bending direction as cylindrical surfaces; in so doing, we present our ongoing research, focusing on finding ways to simply and affordably address the problem of constructability of double-curved structures. By encoding 3D freeform surface information into a 2D workflow, our in-house software (named UNFOLDING) breaks down complex mesh structures into a number of discrete and flat quadrilaterals that can be translated into a fabrication layout. UNFOLDING provides a practical way of linking the process of production and assembly to freeform architectural design. After introducing UNFOLDING in two design studios at Texas A&M University, freshman architecture students used laser-cut quadrilateral panels to design and construct several complex forms with positive or negative Gaussian curvatures.
keywords Complex architectural surfaces; digital fabrication; quad-edge panels; unfolding; 2-manifold meshes
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia18_118
id acadia18_118
authors Kalantari, Saleh; Contreras-Vidal, Jose Luis; Smith, Joshua Stanton; Cruz-Garza, Jesus; Banner, Pamela
year 2018
title Evaluating Educational Settings through Biometric Data and Virtual Response Testing
doi https://doi.org/10.52842/conf.acadia.2018.118
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 118-125
summary The physical design of the learning environment has been shown to contribute significantly to student performance and educational outcomes. However, the existing literature on this topic relies primarily on generalized observations rather than on rigorous empirical testing. Broad trends in environmental impacts have been noted, but there is a lack of detailed evidence about how specific design variables can affect learning performance. The goal of this study was to apply a new approach in examining classroom design innovations. We developed a protocol to evaluate the effectiveness of classroom designs by measuring the physical responses of study participants as they interacted with different designs using a virtual reality platform. Our hypothesis was that virtual “test runs” can help designers to identify potential problems and successes in their work prior to its being physically constructed. The results of our initial pilot study indicated that this approach could yield important results about human responses to classroom design, and that the virtual environment seemed to be a reliable testing substitute when compared against real classroom environments. In addition to leading toward practical conclusions about specific classroom design variables, this project provides a new kind of research method and toolset to test the potential human impacts of a wide variety of architectural innovations.
keywords work in progress, signal processing, eeg, virtual reality, big data, learning performance
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id 54cc
authors Kalawsky, R.
year 1993
title The Science of Virtual Reality and Virtual Environments
source Addison-Wesley, Cambridge, UK
summary This book goals hits basic idea: giving a review on Virtual Reality and on the theory at its basis. Starting from history, going trought science as medicine, arriving at technical stuff this is in syntesis this book. For everyone interested in "How it work?". Only one problem : sometimes is too difficoult to understand at no graduate persons dues to hi level techincal explanations in particoular in display chapter
series other
last changed 2003/04/23 15:14

_id e26f
authors Kalay, Y. (ed.)
year 1987
title Computability of Design
source New York: Wiley & Sons
summary Computer-aided design (CAD) has promised to transform the art and science of architectural design. Yet, despite some significant achievements in the past 3 decades, it has so far failed to do so. This stimulating volume, derived from a symposium held at SUNY, Buffalo in December 1986, explores the reasons why design is so difficult to support by computational means, and what can be done to alleviate this difficulty. Written by an interdisciplinary panel of experts, it presents a varied and comprehensive view of the ways creative design processes can be modelled. The contributors do not all reach the same conclusions, which makes this book lively reading. Topics are arranged into four parts: constructing models of the design process, the computational representation of design knowledge (including spatial information and implicit design intent), methods for computing the design process as a whole (including mathematical programming, expert systems, and shape grammars), and the integration of CAD with traditional design practices.
series other
last changed 2003/04/23 15:14

_id 4248
authors Kalay, Y.E. and Skibniewski, M.J.
year 1995
title Automation in Construction: Fulfilling the promise
source Automation in Construction 4 (1) (1995) pp. 1-3
summary Three years ago, Elsevier Science B.V. has embarked on one of the most important endeavors for the A/E/C community, worldwide. With the help of three dedicated individuals, it has inaugurated a new refereed journal devoted to discussing, critically examining and disseminating the latest developments affecting the processes that lead to the design, construction and use of buildings and other facilities. Unlike other jour-nals in this field, Automation in Construction has been dedicated to exploring the processes and tools used by the A/E/C community, rather than its products. It has been dedicated to issues concerning the A/ E / C community specifically, and to methods, practices and tools that make use of computers in particular, thereby filling a void which existed, until its inauguration, within the A/E/C community's publications.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 09:30

_id 07c6
authors Kalay, Y.E., Harfmann, A.C. and Swerdloff, L.M.
year 1985
title ALEX: A Knowledge-Based Architectural Design System
doi https://doi.org/10.52842/conf.acadia.1985.096
source ACADIA Workshop ‘85 [ACADIA Conference Proceedings] Tempe (Arizona / USA) 2-3 November 1985, pp. 96-108
summary A methodology for the development of a knowledge-based computer-aided design system and its experimental application in the domain of single family house design are presented.

The methodology involves integrating within a unified design environment, tools and techniques that have been independently developed in various disciplines (including knowledge representation, information management, geometric modeling, human,machine interface, and architectural design). By assuming the role of active design partners, the resulting systems are expected to increase the productivity of designers, improve the quality of their products, and reduce cost and lead time of the design process as a whole.

ALEX (Architecture Learning Expert), a particular application of this methodology, is a prototype knowledge-based CAD system in the domain of single family house design. It employs user-interactive, goal directed heuristic search strategies in a solution space that consists of a network of objects. Message-based change propagation techniques, guided by domain-specific knowledge, are used to ensure database integrity and well-formedness.

The significance of the methodology and its application is threefold: it furthers our knowledge of the architectural design process, explores the utilization of knowledge engineering methods in design, and serves as a prototype for developing the next generation of computer-aided architectural design systems.

series ACADIA
email
last changed 2022/06/07 07:52

_id 3d2f
authors Kalay, Y.E., Khemlani, L. and JinWon, C.
year 1998
title An integrated model to support distributed collaborative design of buildings
source Automation in Construction 7 (2-3) (1998) pp. 177-188
summary The process of designing, constructing and managing buildings is fragmented, and involves many participants interacting in complex ways over a prolonged period of time. Currently, sequential communication among the participants is the norm. Consequently, while individual parts of the project may be optimized, the optimality of the overall project suffers. It is our view that the quality of the overall project can be significantly improved (in terms of time, money, and quality of design) if there was a tighter, non-sequential collaboration among the participants. Additional improvements will accrue if the participants were provided with discipline-specific design and evaluation tools, which assist them in performing their tasks. This paper describes the development of an integrated design environment, which is intended to facilitate such collaboration. It comprises a semantically-rich, object-oriented database, which forms the basis for shared design decisions. The database is augmented by knowledge-based query and update operators. Geometric and semantic editing tools round out the environment.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4f90
authors Kalay, Y.E.
year 1998
title P3: Computational environment to support design collaboration
source Automation in Construction 8 (1) (1998) pp. 37-48
summary The work reported in this paper addresses the paradoxical state of the construction industry (also known as A/E/C, for Architecture, Engineering and Construction), where the design of highly integrated facilities is undertaken by severely fragmented teams, leading to diminished performance of both processes and products. The construction industry has been trying to overcome this problem by partitioning the design process hierarchically or temporally. While these methods are procedurally efficient, their piecemeal nature diminishes the overall performance of the project. Computational methods intended to facilitate collaboration in the construction industry have, so far, focused primarily on improving the flow of information among the participants. They have largely met their stated objective of improved communication, but have done little to improve joint decision-making, and therefore have not significantly improved the quality of the design project itself. We suggest that the main impediment to effective collaboration and joint decision-making in the A/E/C industry is the divergence of disciplinary `world-views', which are the product of educational and professional processes through which the individuals participating in the design process have been socialized into their respective disciplines. To maximize the performance of the overall project, these different world-views must be reconciled, possibly at the expense of individual goals. Such reconciliation can only be accomplished if the participants find the attainment of the overall goals of the project more compelling than their individual disciplinary goals. This will happen when the participants have become cognizant and appreciative of world-views other than their own, including the objectives and concerns of other participants. To achieve this state of knowledge, we propose to avail to the participants of the design team highly specific, contextualized information, reflecting each participant's valuation of the proposed design actions. P3 is a semantically-rich computational environment, which is intended to fulfill this mission. It consists of: (1) a shared representation of the evolving design project, connected (through the World Wide Web) to (2) individual experts and their discipline-specific knowledge repositories; and (3) a computational project manager makes the individual valuations visible to all the participants, and helps them deliberate and negotiate their respective positions for the purpose of improving the overall performance of the project. The paper discusses the theories on which the three components are founded, their function, and the principles of their implementation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id cf2003_k_002
id cf2003_k_002
authors KALAY, Yehuda and MARX, John
year 2003
title Changing the Metaphor: Cyberspace as a Place
source Digital Design - Research and Practice [Proceedings of the 10th International Conference on Computer Aided Architectural Design Futures / ISBN 1-4020-1210-1] Tainan (Taiwan) 13–15 October 2003, pp. 19-28
summary Cyberspace is quickly becoming an alternative ‘place’ for everyday economic, cultural, and other human activities. It ought, therefore, to be designed according to the principles, theories, experiences, and practices that have been guiding physical placemaking for thousands of years, rather than the woefully inadequate metaphor of the printed page. 3D Cyber-places must embrace the essential characteristics that make a ‘place’ in physical space, while at the same time take advantage of the opportunities offered by Cyberspace. By looking at physical architecture as a case study and metaphor for organizing space into meaningful places, this paper discusses the possibility of organizing Cyberspace into spatial settings that, like physical places, afford social interaction and embody cultural values.
keywords cyberspace, virtual reality, place-making
series CAAD Futures
email
last changed 2003/09/22 12:21

_id 1af4
authors Kalay, Yehuda E. and Marx, John
year 2001
title Architecture and the Internet: Designing Places in Cyberspace
doi https://doi.org/10.52842/conf.acadia.2001.230
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 230-241
summary Cyberspace, as the information space is called, has become accessible in the past decade through the World Wide Web. And although it can only be experienced through the mediation of computers, it is quickly becoming an alternative stage for everyday economic, cultural, and other human activities. As such, there is a potential and a need to design it according to place-like principles. Making places for human inhabitation is, of course, what architects, landscape architects, town planners, and interior designers have been doing in physical space for thousands of years. It is curious, therefore, that Cyberspace designers have not capitalized on the theories, experiences, and practices that have been guiding physical place-making. Rather, they have adopted the woefully inadequate ‘document metaphor’: instead of ‘web-places’ we find ‘web-pages.’ 3D environments that closely mimic physical space are not much better suited for making Cyber-places: they are, by and large, devoid of essential characteristics that make a ‘place’ different from a mere ‘space,’ and only rarely are they sensitive to, and take advantage of, the peculiarities of Cyberspace. We believe that this state of affairs is temporary, characteristic of early adoption stages of new technologies. As the Web matures, and as it assumes more fully its role as a space rather than as means of communication, there will be a growing need to design it according to place-making principles rather than document-making ones. By looking at physical architecture as a case study and metaphor for organizing space into meaningful places, this paper explores the possibility of organizing Cyberspace into spatial settings that not only afford social interaction, but, like physical places, also embody and express cultural values. At the same time, because Cyberspace lacks materiality, is free from physical constraints, and because it can only be ‘inhabited’ by proxy, these ‘places’ may not necessarily resemble their physical counterparts.
keywords Place, Internet, Cyberspace
series ACADIA
email
last changed 2022/06/07 07:52

_id c55f
authors Kalay, Yehuda E.
year 1986
title The Impact of CAD On Architectural Design Education in the United States
doi https://doi.org/10.52842/conf.ecaade.1986.348
source Teaching and Research Experience with CAAD [4th eCAADe Conference Proceedings] Rome (Italy) 11-13 September 1986, pp. 348-355
summary Computer-Aided Design (CAD) began to appear in schools of architecture in the United States over 15 years ago. By 1982, over 50% of all accredited schools of architecture in North America included some form of CAD in their curricula. This number has continued to steadily increase. For the most part, the use of CAD has been restricted to the few individuals working on special "CAD projects" and to the researchers developing CAD products. The reasons for this limitation have included the low availability, difficulty of use, restricted access and high cost of the CAD systems, as well as limited faculty and administrative support. Recently, however, partly due to the introduction of micro- computer CAD software, and partly due to the growing awareness of the importance of CAD in architectural education and practice, some schools have begun to introduce CAD as part of the general design curriculum.
series eCAADe
email
last changed 2022/06/07 07:52

_id cb47
authors Kalay, Yehuda E.
year 1991
title Computational Modalities of Evaluation and Prediction in Design
source Computer Aided Architectural Design Futures: Education, Research, Applications [CAAD Futures ‘91 Conference Proceedings / ISBN 3-528-08821-4] Zürich (Switzerland), July 1991, pp. 271-284
summary Evaluation can be defined as measuring the fit between achieved (or expected) performances and stated criteria. It is complicated by the multi-criteria and multi-level modalities of design, where an overall balance of performances is preferred to maximizing the performance of a few characteristics, and where evaluation must be performed at different design phases, each characterized by a different informational profile. Each design modality requires a different approach to evaluation: the Multi-Criteria modality requires evaluation of a proposed solution at a particular design phase from multiple points of view, while the Multi-Level modality requires the evaluation of a particular performance characteristic at several different design phases. This paper discusses the multi-modal nature of evaluation and prediction in design, exemplified by some of the approaches that have been proposed to support them computationally. It then argues for the need to develop an integrated, multi-modal design evaluation paradigm.
series CAAD Futures
email
last changed 2003/05/16 20:58

_id 4b8e
authors Kalay, Yehuda E. and Eastman, Charles M.
year 1983
title Shape Operation : An Algorithm For Binary Combining Boundary Model Solids
source November, 1983. 30 p. : ill. includes bibliography
summary The attractiveness of shape operators to end-users of geometric modeling systems stems from their intuitive clarity. Their implementation, however, is one of the most difficult algorithms in computational geometry. This complexity is further increased by the special properties of surfaces, such as orientation, that places the algorithm in the domain of manifold theory more than of set theory. A theoretical base for applying the set-theoretic operators of union, intersection and difference to spatial domains is presented, along with an algorithm that is successful in negotiating these complexities and all their special cases (in particular the presence of coincidental surfaces). The general principles of representing solids through their bounding surfaces and topics in manifold theory and boolean algebra relevant to understanding the algorithm are also discussed. The algorithm has been successfully implemented in three different geometric modeling systems over a period of four years. Some example of its application are included
keywords algorithms, boolean operations, solid modeling, B-rep, geometric modeling, topology
series CADline
email
last changed 2003/05/17 10:18

_id acadia03_018
id acadia03_018
authors Kalay, Yehuda E. and Jeong, Yongwook
year 2003
title Collaborative Design Process Simulation Game
doi https://doi.org/10.52842/conf.acadia.2003.133
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, pp. 133-141
summary Collaboration is an important aspect of the architect’s education. However, it is not amenable to the traditional project-based learning pedagogy that works so well for developing form-making skills. Being a process, rather than a product, it cannot be revealed by judging the results alone, which is often how form-making skills are taught and judged. Rather, the process of collaboration is only evident when the number of the participants exceeds a certain threshold, and when actions taken by other participants affect an individual’s on-going design decisions. The advent of on-line, multi-player simulation games provides an analogy and an opportunity to explore interactive collaborative design pedagogies. Their abstract nature helps focus attention on the core issues of the simulated phenomenon, while the playful nature of a game, as opposed to “work,” encourages immersion and role playing that contribute to the learning process. This paper describes an on-line game for simulating the design collaboration process. It espouses to simulate, exercise, and provide a feel for the social dimension of collaboration, by embedding mutual dependencies that encourage players to engage each other—in adversarial or collaborative manners—to accomplish their goals. Specifically, it is intended to help students understand what collaboration is, why it is necessary, and how it is done. The game is modeled after popular board games like Scrabble and Monopoly: players build “houses” made of colored cubes on a site shared with other players. Actions taken by one player immediately affect his/her neighbors. A carefully constructed set of rules awards or deducts points for every action taken by a player and by his/her neighbors. The rules were constructed in such a manner that players who collaborate (in a variety of ways) stand to gain more points than those who do not. The player with the most points “wins.”
series ACADIA
email
last changed 2022/06/07 07:52

_id caadria2003_c5-3
id caadria2003_c5-3
authors Kalay, Yehuda E. and Jeong, Yongwook
year 2003
title Collaborative Design Simulation Game
doi https://doi.org/10.52842/conf.caadria.2003.745
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 745-758
summary Collaboration is an is an important aspect of the architect's education. However, it is not amenable to the traditional project-based learning pedagogy that works so well for developing form-making skills, because it can only be revealed when the number of participants exceed a certain threshold, and when actions made by others affect the individual's design decisions. The advent of on-line, multi-player games provides an opportunity to explore interactive collaborative design pedagogies. Their abstraction helps focus attention on the core issues of the simulated phenomenon, while the playful nature of a game, as opposed to 'work,' encourages immersion and role playing that contribute to the learning process. This paper describes an on-line game for simulating design collaboration. It espouses to simulate, exercise, and provide a feel for the social dimension of collaboration, by embedding mutual dependencies that encourage players to engage each other-in adversarial or collaborative manner-to accomplish their goals. Specifically, it is intended to help students understand what is collaboration, why it is necessary, and how it is done. The game is modeled after popular board games like Scrabble and Monopoly: players build 'houses' made of colored cubes on a site shared with other players.' A carefully constructed set of rules awards or deducts points for every action taken by a player or by his/her neighbors. The rules were constructed in such a manner that players who collaborate (in a variety of ways) stand to gain more points than those who do not. The player with the most points 'wins.'
series CAADRIA
email
last changed 2022/06/07 07:52

_id 0e0a
authors Kalay, Yehuda E., Harfmann, Anton C. and Swerdloff, Lucien M.
year 1985
title An Expert System Approach to Computer-Aided Participatory Architectural Design
source February, 1985. 16 p. : ill. includes bibliography
summary Increased satisfaction of the built environment can be achieved by more effective communication between the people who use that environment and the designers who form it. Participatory design is a method which educates and involves the users in the actual design process so that such a communication becomes possible. Methods that have so far been developed for participatory design have proven to be too limited, due mainly to the large time demands they place on architects. An effective participatory design method can be achieved by the use of a knowledge-based expert system which is capable of providing an educational design experience to the user. The development and implementation of such a system, specifically for the design of single family homes, is the focus of this paper
keywords expert systems, CAD, architecture, design process
series CADline
email
last changed 2003/06/02 13:58

_id ae4f
authors Kalay, Yehuda E., Swerdloff, Lucien M. and Majkowski, Bruce R.
year 1987
title Computer-Aided Architectural Design Research : Summary of Proposed Research Plan
source March, 1987. [8] p. includes bibliography
summary The potentials of recent advancements in computer-driven, information-rich technologies have begun to effect the disciplines of architecture, planning, and design. The roles of computer-aided design tools are, however, still not completely specified, and it is the responsibility of research institutes, and in particular schools of architecture and design, to explore, define, and develop the uses of computers in architecture, planning, and design. The CAD program at the School of Architecture and Planning is based on the premise that research and education are both essential and interdependent components which provide students with necessary technical skills, improve methods of teaching fundamental design knowledge, and foster the exploration and development of new technologies and methodologies for computers in design. The program has been implemented in what the authors have termed the 'Triad Methodology' of computer-aided architectural design: the teaching of CAD principles to students, the development of a strong research program, and the use of computer tools to enhance the school's general curriculum. The CAD Lab functions as a conduit for basic and advanced research intended to enhance architecture and planning through the use of computers. The faculty and graduate students have already demonstrated their interest and ability to undertake state of the art research in CAD. It is expected that these interests will continue and proliferate in the future. This paper briefly outlines the direction, scope, and required resources for computer related research at the School of Architecture and Planning in Buffalo
keywords CAD, education, architecture, research
series CADline
email
last changed 2003/06/02 10:24

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 764HOMELOGIN (you are user _anon_869682 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002