CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3770

_id ascaad2012_002
id ascaad2012_002
authors Maher, Mary Lou
year 2012
title Designing CAAD for Creativity
source CAAD | INNOVATION | PRACTICE [6th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2012 / ISBN 978-99958-2-063-3], Manama (Kingdom of Bahrain), 21-23 February 2012, pp. 7-9
summary Can we design CAAD to enhance creativity? CAAD is often considered a tool that assists architects in design by managing documentation and facilitating visualization. While there has been anecdotal concern that CAAD inhibits creativity, there is empirical evidence that CAAD can enhance creativity. The challenge is to develop principles for designing CAAD for creativity based on theoretical and empirical research on recognizing and enhancing individual and distributed creative cognition. This presentation describes three concepts that can lead to principles for designing CAAD to enhance human creativity: recognition, perception, and diversity. // 1. Recognition: A framework for recognizing and evaluating creative design, shown in Figure 1, is developed based on research in psychology and design science that includes novelty, value, and surprise. This framework provides a basis for comparing and evaluating the impact of CAAD on creativity. 2. Perception: Perception affects cognition and therefore interaction design is a critical component of designing CAAD for creativity. The results of an empirical study, shown in Figure 2, using a protocol analysis find that changing perception to include tangible user interfaces has a positive effect on creative cognition. These results lead to design principles for increasing perceptual modalities in future CAAD systems. 3. Diversity: A theoretical framework for social and collective intelligence in design show how an increase in cognitive diversity leads to an increase in innovation. Using this framework we can develop design processes that combine the benefits of individual, team, and crowdsourced design ideas, as shown in Figure 3.
series ASCAAD
type keynote paper
email
more http://www.ascaad.org/conference/2012/papers/ascaad2012_002.pdf
last changed 2012/05/15 20:46

_id sigradi2012_198
id sigradi2012_198
authors dos Santos, Denise Mônaco; Tramontano, Marcelo
year 2012
title A parede no digital é mais lisa!” Hibridismos urbanos e grafitti digital [The wall is smoother in digital!” Urban hybridisms and digital graffiti]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 135-139
summary This paper presents the development and results of some interventions in urban spaces using a specific set of computer interfaces, i.e., the tangible interfaces of digital graffiti implemented during cultural activities carried out as part of the Hybrid Territories project: digital media, communities, and cultural activities developed by Nomads.usp, University of São Paulo. It consists of events that aim to explore the creation of hybridisms in urban fragments so as to enrich them in multiple ways, but mainly from a sociocultural perspective.
keywords Espaços híbridos urbanos; Interfaces computacionais tangíveis; Graffiti digital
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2012_195
id sigradi2012_195
authors dos Santos, Denise Mônaco; Tramontano, Marcelo
year 2012
title Hibridismos na cidade: considerações sobre interfaces tangíveis urbanas [Hybridism in the city: thoughts about tangible urban interfaces]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 162-166
summary The consideration about contemporary urban spaces incorporates a set of investigations linked to spatial implementation of digital technologies. This paper is about the different ways in which tangible computational interfaces have been arranged in urban environments, be they projections onto urban surfaces, interactive façades, or even architecture and interactive and/or responsive urban objects. It examines the nature of this phenomenon from perspectives presented by different authors and based on systematized information on a wide array of interfaces. It also posits some significant attributes that should be taken into account when performing a close examination of these interventions. Its aim is to contribute theoretical explorations to the study of hybrid urban spaces.
keywords Interfaces tangíveis urbanas; espaços híbridos; espaços urbanos contemporâneos
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2012_130
id sigradi2012_130
authors Dutt, Florina; Das, Subhajit
year 2012
title Designing Eco Adaptable Residence in a Hot & Humid Climate, in Kolkata, India
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 509-512
summary The research paper outlines the novel design methodology undertaken to redesign an existing apartment building in Kolkata India. The aim of the research is to significantly improve the design of the individual apartments as well as their spatial arrangement to enhance the indoor comfort level experienced by the inhabitants. The initial in-depth study of the existing design of the apartment building encompasses a short survey of the comfort level experienced by its inhabitants in terms of day lighting, natural ventilation and thermal comfort. The survey revealed the way in which these issues affected the behavioral pattern of the inhabitants in rearranging their spatial needs for the given design conditions. Consequently, the endeavor proposed promised to significantly improve the aforesaid areas of problem & discomfort for the building occupants. At the same time, exploiting contemporary computational simulation tools and digital three-dimensional modeling techniques the project leverages the same to prove the improvements proposed by research data in the form of scientific & mathematical tables and values.
keywords Sustainable Design; Solar Architecture; Wind Tunnel Test; Eco Adaptable Housing
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia12_429
id acadia12_429
authors Fox, Michael ; Polancic, Allyn
year 2012
title Conventions of Control: A Catalog of Gestures for Remotely Interacting With Dynamic Architectural Space
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 429-438
doi https://doi.org/10.52842/conf.acadia.2012.429
summary The intent of this project is to create a catalogue of gestures for remotely controlling dynamic architectural space. This research takes an essential first step towards facilitating the field of architecture in playing a role in developing an agenda for control. The process of the project includes a sequence carried out in four stages: 1) Research of gestural control 2) Creating an initial catalogue of spatial architectural gestures 3) Real-world testing and evaluation and 4) Refining the spatial architectural gestures. In creating a vocabulary for controlling dynamic architectural environments, the research builds upon the current state-of-the-art of gestural control which exists in integrated touch- and gesture-based languages of mobile and media interfaces. The next step was to outline architecturally specific dynamic situational activities as a means to explicitly understand the potential to build gestural control into systems that make up architectural space. A proposed vocabulary was then built upon the cross-referenced validity of existing intuitive gestural languages as applied to architectural situations. The proposed gestural vocabulary was then tested against user-generated gestures in the following areas: frequency of "invention", learnability, memorability, performability, efficiency, and opportunity for error. The means of testing was carried out through a test-cell environment with numerous kinetic architectural elements and a Microsoft Kinect Sensor to track gestures of the test subjects. We conclude that the manipulation of physical building components and physical space itself is more suited to gestural physical manipulation by its users instead of control via device, speech, cognition, or other. In the future it will be possible, if not commonplace to embed architecture with interfaces to allow users to interact with their environments and we believe that gestural language is the most powerful means control through enabling real physical interactions.
keywords Gesture , Interactive , Remote , Control , Architecture , Intuition , Physical , Interface
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id sigradi2012_288
id sigradi2012_288
authors Hernández, Silvia Patricia; Trebilcok, Maureen
year 2012
title Ambiente inteligente, la acción e interacción del usuario con los sistemas de control en búsqueda del confort [Intelligent environments, user's action and interaction with the systems looking for comfort]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 91-95
summary A study of inmotic buildings of mild weather was taken at the central zone of Argentina, with postocupation surveys. The aim of it was to determine the comfort reached and the relations between passive and active individual. Providing to the users the power to control the interior ambient, increasing visual and thermal comfort. It was searched the degree the users rather want to leace actions to automatism. We conclude that there is need for design to include graphics interfaces, user’s needs and in consequence to define the interactions with this consideration.
keywords Diseño inmótico; acción del usuario; ambiente inteligente
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2012_91
id ecaade2012_91
authors Khoo, Chin Koi
year 2012
title Sensory Morphing Skins
source Achten, Henri; Pavlicek, Jiri; Hulin, Jaroslav; Matejovska, Dana (eds.), Digital Physicality - Proceedings of the 30th eCAADe Conference - Volume 2 / ISBN 978-9-4912070-3-7, Czech Technical University in Prague, Faculty of Architecture (Czech Republic) 12-14 September 2012, pp. 221-229
doi https://doi.org/10.52842/conf.ecaade.2012.2.221
wos WOS:000330320600022
summary Contemporary responsive architecture often tries to achieve optimised building performance in response to changing environmental conditions. In the precedents a key area of responsiveness is in the building façades or skins. Often however, the skin is made from discrete components and separated equipment. T his research explores the potential for designing responsive architectural morphing skins with kinetic materials that have integrated sensing and luminous abilities. Instead of embedded individual discrete components, this approach intends to integrate the sensing devices and building skins as one ‘single’ entity. This investigation is conducted by project. The project is Blanket, which aims to provide an alternative approach for a lightweight, fl exible and economical sensory architectural skin that respond to proximity and lighting stimuli.
keywords Sensing; responsive; morphing skin; kinetic and phosphorescence materials
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2012_314
id sigradi2012_314
authors Kotsopoulos, Sotirios; Farina, Carla; Casalegno, Federico
year 2012
title Designing an Interactive Architectural Element for a Responsive House
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 369-372
summary This paper presents the features and the reasoning followed in the process of designing a programmable architectural element for a prototype house – a interactive façade involving a matrix of programmable windows. The façade contributes to the precise adjustment of view, airflow, solar radiation, and heat, by allowing the automated modification of the chromatism, the angle and the light transmittance of each individual window.
keywords Electroactive materials; autonomous control; interactive façade; performance; aesthetics
series SIGRADI
email
last changed 2016/03/10 09:54

_id acadia12_269
id acadia12_269
authors Lally, Sean
year 2012
title Architecture of an Active Context
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 269-276
doi https://doi.org/10.52842/conf.acadia.2012.269
summary As we stand with our feet on earth’s outermost surface we build an architecture today that is much like it was several thousand years earlier, in an attempt to extend that outer shell with one of our own making. Artificial masses are built from a refinement of this existing geologic layer into materials of stone, steel, concrete, and glass that assemble to produce new pockets of space through the buildings they create. However, the sixth century BC writer Thales of Miletus put a different perspective on this: he insisted that we live, in reality, not on the summit of a solid earth but at the bottom of an ocean of air (Holmyard 1931). And so, as architecture continues to build up the outermost layer of earth’s surface through a mimicking, embellishing, and enhancing of the materials which it comes from, it raises the question of why we have not brought a similar relationship to the materialities at the bottom of this “ocean” of air to create the spaces we call architecture. If you were looking to level a complaint with the architectural profession, stating that it has not been ambitious enough in scope would not be one. Architects have never shied away from the opportunity to design everything from the building’s shell to the teaspoon used to stir your sugar in its matching cup. But it would seem that the profession has developed a rather large blind spot in terms of what it sees as a malleable material with which to engage. Architects have made assumptions as to what is beyond our scope of action, refraining from engaging a range of material variables due to a belief that the task would be too great or simply beyond our physical control. So even though we are enveloped by them continuously, both on the exterior as well as the interior of our buildings, it must be assumed that the particles, waves, and frequencies of energy that move around us are thought by architects to be too faint and shaky to unload upon them any heavy obligations, that they are too unwieldy for us to control to create the physical boundaries of separation, security, and movement required of architecture. This has resulted in a cultivated set of blinders that essentially defines architecture as a set of mediation devices (surfaces, walls, and inert masses) for tempering the environmental context it is situated in from the individuals and activities within. The spaces we inhabit are defined by their ability to decide what gets in and what stays out (sunlight, precipitation, winds). We place our organizational demands and aesthetic opinions on the surfaces that mediate these variables rather than seeing them as available for manipulation as a building material on their own. The intention here is to recalibrate the materialities that make up that environmental context to build architecture. The starting point is a rather naive question: can we design the energy systems that course in and around us daily as an architectural material so as to take on the needs of activities, securities, and lifestyles associated with architecture? Can the variables that we would normally mediate against instead be heightened and amplified so as to become the architecture itself? That which many would incorrectly dismiss as simply “air” today—thought to be homogeneous, scale-less, and vacant due in part to the limits of our human sensory system to perceive more fully otherwise—might tomorrow be further articulated, populated, and layered so as to become a materiality that will build spatial boundaries, define activities of individuals and movement, and act as architectural space. Our environmental context consists of a diverse range of materials (particles and waves of energy, spectrum of light, sound waves, and chemical particles) that can be manipulated and formed to meet our needs. The opportunity before us today is to embrace the needs of organizational structures and aesthetics by designing the active context that surrounds us through the material energies that define it.
keywords Material energies
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia15_211
id acadia15_211
authors Melsom, James; Girot, Christophe; Hurkxkens, Ilmar
year 2015
title Directed Deposition: Exploring the Roles of Simulation and Design in Erosion and Landslide Processes
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 211-221
doi https://doi.org/10.52842/conf.acadia.2015.211
summary Working with and against environmental processes, such as the movement of water, earth, and rock, and terrain, has been a perpetual challenge since the dawn of civilisation. While it has been possible to gradually tame many landscapes to perform in a predictable manner, there are many circumstances where we are forced to live with and around such processes in everyday life. This research is primarily interested in the potential of design to interact with such processes. Specifically, we are interested in the designed redirection of erosion and landslide processes already observable in nature, taking the urbanised hillsides of the Alps as test case scenario. The research specialisation continues a research and design focus specialised on processes material deposition of river and flood systems, further down the water catchment chain (REF: ANON 2012). This specific alpine research is compelling in the context of Anthropocene processes, we are specifically focussed in the appraisal, harnessing and redirection of existing environmental phenomena, given what can be understood as our inevitable interaction with these processes (Sijmons 2015). Within this broader research, which has ecological, cultural, and formal potential, this paper shall explore the practical aspects of connecting design, and the designer, with the potential for understanding and designing these evolving mountain landscapes. There is a long history behind the development of landscape elements which control avalanches, mud, rock, and landslides. The cultural, functional and aesthetic role of such elements in the landscape is relatively undiscussed, epitomising an approach that is primarily pragmatic in both engineering and expense. It is perhaps no surprise that these elements have a dominant physical and visual presence in the contemporary landscape. Through the investigation of synergies with other systems, interests, and design potential for such landscape elements, it is proposed that new potential can be found in their implementation. This research proposes that the intuitive linking of common design software to direct landslide simulation, design of and cultural use can interact with these natural processes. This paper shall demonstrate methods to within which design can enter the process of landscape management, linking the modelling processes of the landscape designer with the simulation capabilities of the specialised engineer.
keywords Landscape Design Workflows, Landscape Simulation, Terrain Displacement, Material Flow, Erosion Processes, Interdisciplinary Workflows
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id sigradi2012_47
id sigradi2012_47
authors Menegotto, José Luis
year 2012
title Fachada Cinética: aplicando aritmética modular para controlar padrões de movimento [Kinetic facade: applying modular arithmetic for controlling movement patterns]
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 388-391
summary This article reports the experience of creating a support application for designing kinetic facades. The tool´s goal is the creation of a visual simulation system that permits full control over the movement of geometric patterns. In this case, we try to control the variation of polarized glasses used on architectural facades. The study presents a modeling technique of geometrical grids created and controlled by modular arithmetic operations. The programmed algorithm allows performing periodic geometric patterns. The research is aimed at formalizing a library of patterns and types of possible movements through ratings and an abstract symbolic representation.
keywords BIM; AutoCAD; kinetics facades; AutoLISP
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia12_333
id acadia12_333
authors Poulsen, Esben Skouboe ; Andersen, Hans Jørgen
year 2012
title Reactive Light Design in the ""Laboratory of the Street"" Esben Skouboe Poulsen, Hans Jørgen Andersen"
source ACADIA 12: Synthetic Digital Ecologies [Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-62407-267-3] San Francisco 18-21 October, 2012), pp. 333-342
doi https://doi.org/10.52842/conf.acadia.2012.333
summary This paper presents and discusses results related to a full-scale responsive urban lighting experiment and introduces a light design methodology inspired by reactive control strategies in robot systems. The experiment investigates how human motion intensities can be used as input to light design in a reactive system. Using video from 3 thermal cameras and computer vision analysis; people’s flow patterns were monitored and send as input into a reactive light system. Using physical as well as digital models 4 different light scenarios is designed and tested in full-scale. Results show that people on the square did not engage in the changing illumination and often they did not realized that the light changed according to their presence. However from the edge of the square people observed the light patterns “painted” on the city square, as such people became actors on the urban stage, often without knowing. Furthermore did the experiment showcase power savings up to 90% depending on the response strategy.
keywords Responsive environments , Architectural Lighting , Interaction , Realtime response , Computer vision
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id 2005_763
id 2005_763
authors Beilharz, Kirsty
year 2005
title Architecture as the Computer Interface: 4D Gestural Interaction with Socio-Spatial Sonification
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 763-770
doi https://doi.org/10.52842/conf.ecaade.2005.763
summary Architecture today extends far beyond designing building shells and material, peripheral boundaries. Arguably, it has always been, and shifts increasingly in contemporary environments towards, designing space and interaction with space. Hence, the role of the designer includes integration of computing in architecture through ambient display and non-tactile interaction. This paper explores a framework in which the architecture is the computer interface to information sonification. (Sonification is automatically generated representation of information using sound). The examples in this paper are Emergent Energies, demonstrating a socio-spatially responsive generative design in a sensate environment enabled by pressure mats; Sensor-Cow using wireless gesture controllers to sonify motion; and Sonic Kung Fu which is an interactive sound sculpture facilitated by video colour-tracking. The method in this paper connects current information sonification methodologies with gesture controller capabilities to complete a cycle in which gestural, non-tactile control permutes and interacts with automatically-generated information sonification. Gestural pervasive computing negotiates space and computer interaction without conventional interfaces (keyboard/mouse) thus freeing the user to monitor or display information with full mobility, without fixed or expensive devices. Integral computing, a blurring of human-machine boundaries and embedding communication infrastructure, ambient display and interaction in the fabric of architecture are the objectives of this re-thinking.
keywords Interactive Sonification, Gesture Controllers, Responsive Spaces, SpatialSound
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia09_234
id acadia09_234
authors Cantrell, Bradley E.; Yates, Natalie A.
year 2009
title Abstraction Language: Digital/ Analog Dialogues
source ACADIA 09: reForm( ) - Building a Better Tomorrow [Proceedings of the 29th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-9842705-0-7] Chicago (Illinois) 22-25 October, 2009), pp. 234-239
doi https://doi.org/10.52842/conf.acadia.2009.234
summary The connection between biological systems and machines is quickly becoming an important factor in designing the built environment. This paper explores the model of abstraction languages as a method to create communications between biological and mechanical systems, focusing on modes accessible to design professionals. The development of data and control abstraction in programming is explored in order to develop linkages between physical systems and digital interfaces. This examination looks at current methods of data conveyance for the built environment, and at pushing beyond these current methods to suggest a method of abstraction. The researchers are particularly interested in the ability of abstraction to compress ecological/biological complexity into accessible modules for responsive environments.
keywords Abstraction, synthesis, processing, biological systems, responsive design
series ACADIA
type Normal paper
email
last changed 2022/06/07 07:54

_id cf2011_p135
id cf2011_p135
authors Chen Rui, Irene; Schnabel Marc Aurel
year 2011
title Multi-touch - the future of design interaction
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 557-572.
summary The next major revolution for design is to bring the natural user interaction into design activities. Graphical User Interfaces (GUI) brought a new approach that was more effective compared to their conventional predecessors. In recent years, Natural User Interfaces (NUI) have advanced user experiences and multi-touch and gesture technologies provide new opportunities for a variety of potential uses in design. Much attention has been paid to leverage in the design of interactive interfaces. The mouse input and desktop screen metaphors limit the information sharing for multiple users and also delayed the direct interaction for communication between each other. This paper proposes the innovative method by integrating game engine ‘Unity3D’ with multi-touch tangible interfaces. Unity3D provides a game development tool as part of its application package that has been designed to let users to focus on creating new games. However, it does not limit the usage of area to design additional game scenarios since the benefits of Unity3D is allowing users to build 3D environments with its customizable and easy to use editor, graphical pipelines to openGL (http://unity3d.com/, 2010 ). It creates Virtual Reality (VR) environments which can simulates places in the real world, as well as the virtual environments helping architects and designers to vividly represent their design concepts through 3D visualizations, and interactive media installations in a detailed multi-sensory experience. Stereoscopic displays advanced their spatial ability while solving issues to design e.g. urban spaces. The paper presents how a multi-touch tabletop can be used for these design collaboration and communication tasks. By using natural gestures, designers can now communicate and share their ideas by manipulating the same reference simultaneously using their own input simultaneously. Further studies showed that 3Dl forms are perceived and understood more readily through haptic and proprioceptive perception of tangible representations than through visual representation alone (Gillet et al, 2005). Based on the authors’ framework presented at the last CAADFutures, the benefits of integrating 3D visualization and tactile sensory can be illustrated in this platform (Chen and Wang, 2009), For instance, more than one designer can manipulate the 3D geometry objects on tabletop directly and can communicate successfully their ideas freely without having to waiting for the next person response. It made the work more effective which increases the overall efficiency. Designers can also collect the real-time data by any change they make instantly. The possibilities of Uniy3D make designing very flexible and fun, it is deeply engaging and expressive. Furthermore, the unity3D is revolutionizing the game development industry, its breakthrough development platform for creating highly interactive 3D content on the web (http://unity3d.com/ , 2010) or similar to the interface of modern multimedia devices such as the iPhone, therefore it allows the designers to work remotely in a collaborative way to integrate the design process by using the individual mobile devices while interacting design in a common platform. In design activities, people create an external representation of a domain, often of their own ideas and understanding. This platform helps learners to make their ideas concrete and explicit, and once externalized, subsequently they reflect upon their work how well it sits the real situation. The paper demonstrates how this tabletop innovatively replaces the typical desktop metaphor. In summary, the paper addresses two major issues through samples of collaborative design: firstly presenting aspects of learners’ interactions with physical objects, whereby tangible interfaces enables them constructing expressive representations passively (Marshall, 2007), while focussing on other tasks; and secondly showing how this novel design tool allows designers to actively create constructions that might not be possible with conventional media.
keywords Multi-touch tabletop, Tangible User Interface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2016_693
id caadria2016_693
authors Fernando, Ruwan; Karine Dupre and Henry Skates
year 2016
title Tangible User Interfaces for Teaching Building Physics: Towards continuous designing in education
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 693-702
doi https://doi.org/10.52842/conf.caadria.2016.693
summary This paper follows our evaluation and research into designing tangible physical media for the purposes of teaching building physics to undergraduate architecture students. These media interfaces make use of a virtual environment to promote an understanding of the cycles, which govern architectural and urban projects (for example solar studies, the flow of heat, air and water). This project aims to create an ecology of devices which can be used by students to self-direct themselves and harbour critical making in their research methods (with the explicit intent of dissolving the barrier between design and research). The basic premise of this research, is that in light of growing student numbers, more students lacking confidence in numeracy skills as well as the desire to have self-directed or group-directed learning, tangible media has a promising role to play. There are several reasons for this optimism. The first is that a better sense of intuition is gained from an interactive model over reading notes from a lecture or textbook. The second is that tangible media engages in other modes of learning, being valuable to students who have an aptitude for kinesthetic and spatial learning over text-dominant learning.
keywords Pedagogy; tangible user interfaces; augmented reality; internet of things; designing for teaching
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2008_070
id ecaade2008_070
authors Guéna, François; Untersteller, Louis-Paul
year 2008
title Computing Different Projections of a Polyhedral Scene from a Single 2D Sketch
source Architecture in Computro [26th eCAADe Conference Proceedings / ISBN 978-0-9541183-7-2] Antwerpen (Belgium) 17-20 September 2008, pp. 195-200
doi https://doi.org/10.52842/conf.ecaade.2008.195
summary This paper presents the development of a tool which is capable of compute several projections of a polyhedral scene from a single axonometric or perspective projection. This projection is hand-drawn and may be incomplete. This sketch can be rotated with a kind of trackball and the tool computes in real-time new projections. In that way the designer can choose another view from which he is able to control and complete the sketch and carry on designing. So this tool can be useful for exploring architectural forms in the early phases of the design process. Unlike others freehand sketching interfaces, the system does not operate any reconstruction in 3D. Everything is computed in a 2D world.
keywords Architectural Design, Sketching, Projective Geometry, Duality, 3D Reconstruction
series eCAADe
email
last changed 2022/06/07 07:50

_id ijac201816102
id ijac201816102
authors Harmon, Brendan A.; Anna Petrasova, Vaclav Petras, Helena Mitasova and Ross Meentemeyer
year 2018
title Tangible topographic modeling for landscape architects
source International Journal of Architectural Computing vol. 16 - no. 1, 4-21
summary We present Tangible Landscape—a technology for rapidly and intuitively designing landscapes informed by geospatial modeling, analysis, and simulation. It is a tangible interface powered by a geographic information system that gives three- dimensional spatial data an interactive, physical form so that users can naturally sense and shape it. Tangible Landscape couples a physical and a digital model of a landscape through a real-time cycle of physical manipulation, three-dimensional scanning, spatial computation, and projected feedback. Natural three-dimensional sketching and real-time analytical feedback should aid landscape architects in the design of high performance landscapes that account for physical and ecological processes. We conducted a series of studies to assess the effectiveness of tangible modeling for landscape architects. Landscape architecture students, academics, and professionals were given a series of fundamental landscape design tasks—topographic modeling, cut-and-fill analysis, and water flow modeling. We assessed their performance using qualitative and quantitative methods including interviews, raster statistics, morphometric analyses, and geospatial simulation. With tangible modeling, participants built more accurate models that better represented morphological features than they did with either digital or analog hand modeling. When tangibly modeling, they worked in a rapid, iterative process informed by real-time geospatial analytics and simulations. With the aid of real-time simulations, they were able to quickly understand and then manipulate how complex topography controls the flow of water.
keywords Human–computer interaction, tangible interfaces, tangible interaction, landscape architecture, performance, geospatial modeling, topographic modeling, hydrological modeling
series journal
email
last changed 2019/08/07 14:03

_id acadia16_402
id acadia16_402
authors Pinochet, Diego
year 2016
title Antithetical Colloquy: From operation to interaction in digital fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 402-411
doi https://doi.org/10.52842/conf.acadia.2016.402
summary This paper, introduces a cybernetic approach to digital design and fabrication by embracing aspects of embodied interaction, behavior and communication between designers and machines. To do so, it proposes the use of body gestures, digital/tangible interfaces and Artificial Intelligence to create a more reciprocal way of making. The goal is to present a model of designing and making as a ‘conversation’ instead a mere dialog from creator to executor of a predefined plan to represent an idea. In other words, this paper proposes a platform for interaction between two antithetical worlds—one binary/deterministic and the other perceptual/ambiguous—by focusing in the exploratory aspects of design and embracing aspects of improvisation, ambiguity, imprecision and discovery in the development of an idea.
keywords compuatational making, computational design, interactive fabrication, digital fabrication
series ACADIA
type paper
email
last changed 2022/06/07 08:00

_id ga9813
id ga9813
authors Pontecorvo, Michael Steven
year 1998
title Designing the Undesigned: Emergence as a tool for design
source International Conference on Generative Art
summary Design, as an act and a result, is a natural part of the larger biological context in which we live. It is both a behavior and a tangible side effect of the organic system from which it arises. A design can be characterized as a physical exemplar of the concept of memes, the 'genetic' building blocks of ideas or units of cultural transmission. In this capacity, design has served to extend humankind's reach and ensure and enrich humankind's survival in the full range and variability of conditions the Earth has to offer. In a very real sense, design has 'evolved' its own rich ecosystem, with a robust diversity of elements, dynamics, and interrelationships rivaling that of the organic system from which it derives. In the ecology of design, designs obey laws analogous to the laws of survival and selection that organisms in nature obey. Given the recent advances in understanding and modeling of the biological and physical systems, it is not surprising that artists and designers are now turning to these models as a 'new' resource for the conceptualization and design of structured artifacts and spaces. While there are many fundamental technical issues surrounding development and application of generative models and processes, the relationship of artist to the process of creation is a central issue in the scaling up and widespread accessibility/acceptance of the generative approach. This paper will present a set of observations from the perspective of a small company of artist/ technologists trying to bridge the commercial and artistic application of generative processes. Specifically, the paper will explore some approaches to the designer/system relationship and process control metaphor, the balancing of serendipity and design convergence, the definitions and representations of design spaces, and finally, present some ideas about the future prospects and promising new techniques for generative design.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 188HOMELOGIN (you are user _anon_412187 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002