CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 744

_id ecaade2013_036
id ecaade2013_036
authors Bernhard, Mathias
year 2013
title Frequency Analysis of Wood Textures
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 597-603
doi https://doi.org/10.52842/conf.ecaade.2013.1.597
wos WOS:000340635300062
summary “Frequency analysis of wood textures” presents the application of Fourier analysis to translate images of wood textures to the frequency domain. With this encoding, a lot more details can be captured by the same amount of data points than with other descriptions in the spatial domain. A small set of overlapping waves with different frequencies, magnitudes and phase angles allows to characterize the main features of the wood’s grain texture and to quantify and classify different samples. The sample’s color information is thereby enhanced with an array of direction vectors, describing the local orientation distribution.
keywords Wood; Fourier analysis; pattern recognition; information theory.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2013_198
id caadria2013_198
authors Chee Zong Jie and Patrick Janssen
year 2013
title Exploration of Urban Street Patterns – Multi-Criteria Evolutionary Optimisation Using Axial Line Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2013.695
wos WOS:000351496100068
summary In urban design, researchers have developed techniques to automate both the generation and evaluation of urban street patterns. In most cases, these approaches are investigated in isolation from one another. Recently, a number of researchers have attempted to couple these approaches, in order to enable larger numbers of street patterns to be generated and evaluated in an iterative loop. However, to date, the possibility of fully automating the generative-evaluative loop using optimisation algorithms has not been explored. This research proposes an explorative design method in which urban street patterns can be optimised for multiple conflicting performance criteria. The optimisation process uses evolutionary algorithms to evolve populations of design variants by iteratively applying three key procedures: development, evaluation, and feedback. For development, a generative technique is proposed for constructing street patterns. For evaluation, various performance measures are used, including in particular Space Syntax based Axial Line analysis. For feedback, a Pareto-ranking algorithm is used that ranks street patterns according to multiple criteria. The proposed method is demonstrated using an abstract scenario in which orthogonal street patterns are evolved for a small urban area.  
keywords Axial line analysis, Generative modelling, Evolutionary algorithms, Decision chain encoding, Urban street patterns 
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2013_397
id sigradi2013_397
authors Herrera Polo, Pablo C.
year 2013
title Patrones en la Enseñanza de la Programación en Arquitectura: De la Hetero-Educación a la Auto-Educación en Latinoamérica [Patterns in the Teaching of Visual Programming in Architecture: From the Hetero-Education to Self-Education in Latin America ]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 555 - 559
summary Teaching programming to architects, in academic and professional contexts, occurs in Latin America through self-management, and focused on results, without analyzing the processes and establishing a follow-up to participants, to establish patterns of application. The pointing out of these problems and the proposal of how to make said education sustainable has allowed finding variables specific to the region and to the very same tools and instruments, which are constantly evolving. At the same time, it is proposed after the analysis, that hetero-education (shared learning) itself requires self-education (self-teaching processes) as a complementary process.
keywords Visual programming; Scripting; Hetero education; Self education; Rhino
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2013_203
id caadria2013_203
authors Janssen, Patrick and Vignesh Kaushik
year 2013
title Skeletal Modelling – A Developmental Template for Evolutionary Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 705-714
doi https://doi.org/10.52842/conf.caadria.2013.705
wos WOS:000351496100069
summary Evolutionary designis an approach that evolves populations of design variants through the iterative application of a set of computational procedures. For architecture and urban design, the developmental procedure typically needs to be capable of generating bounded variability, whereby design variants are both highly variable and highly constrained. This paper proposes a template for creating such developmental procedures. The template uses decision chain encoding techniques in order to generate a sparse skeleton model, and then uses standard parametric modelling techniques in order to generate a detailed form model. A demonstration is presented where the template is used to create a developmental procedure for generating design variants for a large residential project.  
keywords volutionary, Developmental, Generative, Design optimisation 
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2013_186
id caadria2013_186
authors Kaushik, Vignesh and Patrick Janssen
year 2013
title An Evolutionary Design Process – Adaptive-Iterative Explorations in Computational Embryogenesis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 137-146
doi https://doi.org/10.52842/conf.caadria.2013.137
wos WOS:000351496100014
summary Computational embryogenies are a special kind of genotype to phenotype mapping process widely used inexplorative evolutionary systems as they provide the mechanism for generating more complex solutions. This paper focuses on how designers explore embryogenies for specific design scenariosthrough an adaptive-iterative process.The process is demonstratedfor a complex project to generate a prototypical urban farm in Singapore. It is shown that by employing an adaptive-iterative process, the embryogeny can be made progressively more complex and less abstract, thereby allowing the exploration to be guided by the designer.  
keywords Computational embryogeny, Evolutionary, Multi-criteria optimization, Encoding, Decoding 
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2013_017
id caadria2013_017
authors Lin, Chieh-Jen 
year 2013
title Visual Architectural Topology – An Ontology-Based Visual Language Tool in an Architectural Case Library
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 3-12
doi https://doi.org/10.52842/conf.caadria.2013.003
wos WOS:000351496100001
summary This paper aims to develop a tool entitled “Visual Architectural Topology (VAT)” for encoding topological information within a case library. VAT can annotate design objects and their topological in-formation within the unstructured information of a design case. By applying an ontology-based topological validation mechanism, VAT aims to establish a visual language for representing the “topological knowledge” of architectural design objects in a case library. The pur-pose of VAT is to extend the knowledge representation ability of a de-sign case library, and to provide a foundation for development of a design-assistance tool performing the conversion and processing among semantic and geometric design information. 
keywords Case-based design, Case library, Architectural topology, Semantic ontology, Visual language 
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia13_191
id acadia13_191
authors Maleki, Maryam M.; Woodbury, Robert F.
year 2013
title Programming In The Model — A New Scripting Interface for Parametric CAD Systems
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 191-198
doi https://doi.org/10.52842/conf.acadia.2013.191
summary Programming, often called scripting, has become a key feature in most CAD systems and an equally key area of expertise in CAD. However, programming surrenders many of the benefits of direct manipulation and introduces notational elements that are cognitively distant from the designs being created. In addition, it creates barriers to use and is often perceived as being too difficult to apply. We introduce Programming In the Model (PIM) through a prototype, implementing live side-by-side views, multi-view brushing and highlighting, live scripting, auto- translating from modeling operations to script and localized relational information within model windows. A qualitative user study confirms PIM’s features and raises issues for future development. A key result is the need for multi-directional extreme liveness , that is, maintaining consistency of action across views at the smallest possible scale. We argue that PIM principles are applicable in textual and visual programming alike.
keywords tools and interfaces, end-user programming, parametric design, scripting, human computer interaction, live programming
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id ecaade2013_262
id ecaade2013_262
authors Rolando, Andrea and D’Uva, Domenico
year 2013
title Hyperdomes
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 315-324
doi https://doi.org/10.52842/conf.ecaade.2013.2.315
wos WOS:000340643600032
summary The development of new shapes in architecture has deeply influenced the current perception of the built environment. The analysis of the processes behind this evolution is, therefore, of great interest. At least two well known factors, influencing this development, may be pointed out: the great improvement of digital tools and the tendency toward building distinctiveness.In particular, the innovation of digital tools such as parametric modeling is resulting in an overall diffusion of complex shapes, and the phenomenon is also evident in a clear expressionistic search for architectural singularity, that some might consider as a negative effect of globalization trends.Though, if we can consider as a positive result the fact that parameterization allows a deeper control over design factors in terms of reference to cultural, historical and physical context, at the same time such control possibilities are sometimes so stark to be even auto-referential, stepping over site-specific parameterization, to create unusual shapes just for the sake of complexity.The ever-growing diffusion of generative design processes is in fact going to transform niche procedures, frequently limited to temporary decontextualized structures, into an architectural complexification as an end in itself.The hypothesis of this paper is to demonstrate that site-specific parametrization can be considered as a tool able to translate intentions into shape; it is necessary, for this aim, the widening of the meaning of the word singularity.
keywords Urban environment; distinctiveness; non-standard roofing structures.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2024_198
id ecaade2024_198
authors Liang, Jiadong; Zhong, Ximing; Koh, Immanuel
year 2024
title Building-VGAE: Generating 3D detailing and layered building models from simple geometry
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 625–634
doi https://doi.org/10.52842/conf.ecaade.2024.1.625
summary In the current field of AI-assisted architectural design, deep learning models primarily focus on simulating the highly detailed final models designed by human architects. However, in practical design tasks, the final model demands a high level of detail and clear layered classification information for building components. This presents a more significant challenge. We propose a three-dimensional(3D) building generation framework—Building-VGAE, based on Variational Graph Autoencoder (VGAE). Building-VGAE can generate 3D models with detailed building components and layered structure information from end to end, according to design constraints and building volumes. Building-VGAE’s experiment involves transforming 27,965 Housegan data into 3D data represented as graph-structured. The VGAE model then learns the data features and predicts the building component categories to which nodes and edges belong in the experiment. The results demonstrate that the framework can precisely reconstruct and predict building layouts that comply with design constraints and enable unified editing of building components of the same category. Building-VGAE contributes to its ability to learn the generative relationship from design constraints and building volumes to complex high-detail models compared to existing AI generative models. It also possesses prediction and editing capabilities based on the layered classification information of building components. This framework has the potential to position AI as a design partner for human architects, offering end-to-end 3D generative intelligence.
keywords Variational Graph Auto-Encoder, 3D Spatial Grid Structure, Detailed Building Components, Layered Structure, Graph Reconstruction and Generation
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia21_134
id acadia21_134
authors Johanes, Mikhael; Huang, Jeffrey
year 2021
title Deep Learning Isovist
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 134-141.
doi https://doi.org/10.52842/conf.acadia.2021.134
summary Understanding the qualitative aspect of space is essential in architectural design. However, the development of computational design tools has lacked features to comprehend architectural quality that involves perceptual and phenomenological aspects of space. The advancement in machine learning opens up a new opportunity to understand spatial qualities as a data-driven approach and utilize the gained information to infer or derive the qualitative aspect of architectural space. This paper presents an experimental unsupervised encoding framework to learn the qualitative features of architectural space by using isovist and deep learning techniques. It combines stochastic isovist sampling with Variational Autoencoder (VAE) model and clustering method to learn and extract spatial patterns from thousands of floorplans data. The developed framework will enable the encoding of architectural spatial qualities into quantifiable features to improve the computability of spatial qualities in architectural design.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2024_386
id caadria2024_386
authors Liang, Jiadong, Zhong, Ximing and Koh, Immanuel
year 2024
title Bridging Bim and AI: A Graph-Bim Encoding Approach for Detailed 3D Layout Generation Using Variational Graph Autoencoder
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 221–230
doi https://doi.org/10.52842/conf.caadria.2024.1.221
summary Building Information Modelling (BIM) data provides an abundant source with hierarchical and detailed information on architectural elements. Nevertheless, transforming BIM data into an understandable format for AI to learn and generate controllable and detailed three-dimensional (3D) models remains a significant research challenge. This paper explores an encoding approach for converting BIM data into graph-structured data for AI to learn 3D models, which we define as Graph-BIM encoding. We employ the graph reconstruction capabilities of a Variational Graph Autoencoder (VGAE) for the unsupervised learning of BIM data to identify a suitable encoding method. VGAE's graph generation capabilities also reason for spatial layouts. Results demonstrate that VGAE can reconstruct BIM 3D models with high accuracy, and can reason the entire spatial layout from partial layout information detailed with architectural components. The primary contribution of this research is to provide a novel encoding approach for bridging AI and BIM encoding. The Graph-BIM encoding method enables low-cost, self-supervised learning of diverse BIM data, capable of learning and understanding the complex relationships between architectural elements. Graph-BIM provides foundational encoding for training general-purpose AI models for 3D generation.
keywords BIM, graph-structured, encoding approach, VGAE, graph reconstruction and generation
series CAADRIA
email
last changed 2024/11/17 22:05

_id acadia13_391
id acadia13_391
authors Abbasy-Asbagh, Ghazal
year 2013
title [re]folding Muqarnas: A case study
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 391-392
doi https://doi.org/10.52842/conf.acadia.2013.391
summary This project uses folded surface as a mechanism to make a historically non-structural system, Muqarnas, into one that combines surface and structure.
keywords structural optimization, folded surface, cultural landscapes, muqarnas, complex geometry
series ACADIA
type Design Poster
email
last changed 2022/06/07 07:54

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201310207
id ijac201310207
authors Abondano, David
year 2013
title The Return of Nature as an Operative Model: Decoding of Material Properties as Generative Inputs to the Form-Making Process
source International Journal of Architectural Computing vol. 11 - no. 2, 267-284
summary The abandonment of nature as an architectural model and the redefinition of the relationship between form and material were two of the main consequences of industrialization for modern architecture. While nature was replaced by the machine as a model for architecture, industrial production suppressed the craftsman's knowledge of the material and the associated techniques once essential to the form-making process. Thus, the replacement of nature as a model implied that principles once related to natural processes started to be seen as industrial values, i.e., the economy of means stopped being recognized as a quality related to natural form-making processes and became a demand of industrial production. Nowadays, material properties and nature are being reintroduced into architecture with the help of digital technologies; that is, the return of nature though computation. As a result, nature has become an operational model as opposed to the visual or iconic one it used to be; its inner qualities and processes are being decoded in order to inform the form-making process and foster innovative digital ornamentation.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_096
id ecaade2013_096
authors Achten, Henri
year 2013
title Buildings with an Attitude
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 477-485
doi https://doi.org/10.52842/conf.ecaade.2013.1.477
wos WOS:000340635300050
summary In order to achieve interactive architecture it is necessary to consider more than the technological components of sensors, controllers, and actuators. The interaction can be focused to different interaction activities: instructing, conversing, manipulating, and exploring (we propose to call this the interaction view). Additionally, the purpose of the building may range from performing, sustaining, servicing, symbolising, to entertaining (we propose to call this the world view). Combined, the interaction view and world view establish 20 different attitudes, which are flavours of behaviour for the interactive building. Through attitudes interaction profiles can be established and criteria derived for the design of interactive buildings.
keywords Interactive architecture; design theory; Human-Computer Interaction; augmented reality; mixed reality.
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2013_030
id caadria2013_030
authors Adamantidis, Ermis; Madhav Kidao and Marios Tsiliakos
year 2013
title Siphonophore – A Physical Computing Simulation of Colonial Intelligence Organisms
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 355-364
doi https://doi.org/10.52842/conf.caadria.2013.355
wos WOS:000351496100035
summary This paper sets out to document the procedural design and implementation of “Siphonophore” a multisensory digital ecology, mimicking colonial-ordered behaviour systems. The exploration of the notion of “self” in a complex system of highly integrated individuals with reference to the emergence of behaviours from the human-machine-context interaction, is engaged by this open system’s hierarchical articulation of electronics, Arduino boards, sensors and programming routines. User interaction and recorded statistics from the system’s core algorithm are assessed, in relation to the capacity of this prototype to provide an alternative methodology of describing collective intelligence, while presenting a non-standard perspective of body-space interaction and design as entertaining art. The overall impact is discussed in relation to the examined observations, towards a potential advancement to a system of superior contextual understanding.  
keywords Colonial intelligence, Multisensory installation, Physical computing, Spatial sensing, Human-machine interaction 
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia13_281
id acadia13_281
authors Ahlquist, Sean; Menges, Achim
year 2013
title Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 281-292
doi https://doi.org/10.52842/conf.acadia.2013.281
summary Material behavior can be defined as the confluence of associative rules, contextual pressures and constraints of materialization. In more general terms, it can be parameterized as topologies, forces and materiality. Forming behavior means resolving the intricate matrix of deterministic and indeterministic factors that comprise and interrelate each subset of these material- nherent conditions. This requires a concise design framework which accumulates the confluent behavior through successive and cyclical exchange of multiple design modes, rather than through a single design environment or set of prescribed procedures. This paper unfolds a sequencing of individual methods as part of a larger design framework, described through the development of a series of complex hybrid- structure material morphologies. The “hybrid” nature reflects the integration of multiple force-active structural concepts within a single continuous material system, devising both self-organized yet highly articulated spatial conditions. This leads primarily to the development of what is termed a “textile hybrid” system: an equilibrium state of tensile surfaces and bending-active meshes. The research described in this paper looks to expose the structure of the textile as an indeterministic design parameter, where its architecture can be manipulated as means for exploring and differentiating behavior. This is done through experimentation with weft-knitting technologies, in which the variability of individual knit logics is instrumentalized for simultaneously articulating and structuring form. Such relationships are shown through an installation constructed at the ggggallery in Copenhagen, Denmark.
keywords Material Behavior, Spring-based Simulation, CNC Knitting, Form- and Bending-Active, Textile Hybrid Structures.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ecaade2013_297
id ecaade2013_297
authors Aish, Robert
year 2013
title DesignScript: Scalable Tools for Design Computation
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 87-95
doi https://doi.org/10.52842/conf.ecaade.2013.2.087
wos WOS:000340643600008
summary Design computation based on data flow graph diagramming is a well-established technique. The intention of DesignScript is to recognise this type of data flow modeling as a form of ‘associative’ programming and to combine this with the more conventional ‘imperative’ form of programming into a single unified computational design application. The use of this application is intended to range from very simple graph based exploratory ‘proto-programming’ as used by novice end-user programmers to multi-disciplinary design optimisation as used by more experienced computational designers.
keywords Graph; scripting; associative; imperative.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia13_161
id acadia13_161
authors Akbarzadeh; Masoud
year 2013
title Performative Surfaces: Generating complex geometries using planar flow patterns
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2013.161
summary This research explains the development process of a design tool that can construct complex surface geometries using only two-dimensional plan drawings. The intention behind this tool is to address certain complex behavior of surface geometries such as hydrological characteristics. This paper briefly explains the historic and mathematic description of surface data structures, according to Cayley, Maxwell and Morse. This is followed by a brief introduction of the surface network/critical graph extraction technique in GIS. Additionally, the algorithm of contour extraction from asimple critical graph to reconstruct a surface is explained. In the final section the lessons learnedfrom the previous sections are used to develop algorithms for a tool which uses only plan drawings to construct complex surfaces. Three algorithms are explained in the final section among which the third one is considered to be the most complete and promising approach. Therefore,some design examples are presented to show the flexibility of the tool. At the end, this paper provides suggestions and discussions to reflect further ideas in order to improve the tool in future.
keywords Tools and Interfaces, complex surface, drainage patterns, discrete flow diagram, surface networks, critical graph, and surface generation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_514073 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002