CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 5691

_id acadia13_161
id acadia13_161
authors Akbarzadeh; Masoud
year 2013
title Performative Surfaces: Generating complex geometries using planar flow patterns
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 161-172
doi https://doi.org/10.52842/conf.acadia.2013.161
summary This research explains the development process of a design tool that can construct complex surface geometries using only two-dimensional plan drawings. The intention behind this tool is to address certain complex behavior of surface geometries such as hydrological characteristics. This paper briefly explains the historic and mathematic description of surface data structures, according to Cayley, Maxwell and Morse. This is followed by a brief introduction of the surface network/critical graph extraction technique in GIS. Additionally, the algorithm of contour extraction from asimple critical graph to reconstruct a surface is explained. In the final section the lessons learnedfrom the previous sections are used to develop algorithms for a tool which uses only plan drawings to construct complex surfaces. Three algorithms are explained in the final section among which the third one is considered to be the most complete and promising approach. Therefore,some design examples are presented to show the flexibility of the tool. At the end, this paper provides suggestions and discussions to reflect further ideas in order to improve the tool in future.
keywords Tools and Interfaces, complex surface, drainage patterns, discrete flow diagram, surface networks, critical graph, and surface generation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2013_148
id caadria2013_148
authors Coutinho, Filipe; Eduardo Castro e Costa, José P. Duarte and Mário Kruger
year 2013
title A Shape Grammar to Generate Loggia Rucellai
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 791-800
doi https://doi.org/10.52842/conf.caadria.2013.791
wos WOS:000351496100082
summary This article shows the result of generating a 3d model of Loggia Rucellai in Florence using a shape grammar from Leon Batista Alberti’s treatise De Re Aedificatoria and it is a test bed for further generations of buildings using Alberti’s rules. It shows the accuracy of such grammar to help tracing the degree of influence of Alberti’s treatise in Renaissence Portuguese architecture. Rucellai palace facade ornaments and its interior loggia where used to analyze and compare the Loggia generation accuracy. A Grasshopper script is used for the automation of the rules derivation. An evaluation process is presented and its use aims to better understand the deviations between the treatise and the Loggia grammars.  
keywords lberti, Shape grammars, Transformations in design, Grammar evaluation, Digital fabrication  
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2013_178
id ecaade2013_178
authors Pak, Burak and Verbeke, Johan
year 2013
title Walkability as a Performance Indicator for Urban Spaces
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 423-432
doi https://doi.org/10.52842/conf.ecaade.2013.1.423
wos WOS:000340635300044
summary This paper frames walkability as a performance indicator for urban spaces and critically addresses some of the existing evaluation methods. It introduces alternative strategies and tools for enabling the collective evaluation of walkability and discusses how experiences of the citizens can possibly lead to a social construct of walkability. This discussion is elaborated by a pilot study which includes exploratory research, social-geographic web services and heat maps. Using these tools and methods, it was possible to derive various experiential and environmental spatial qualities, extract problems and identify problematic areas. From these we have learned that walkability may serve as a fruitful conversation framework and a participatory research concept. Furthermore, we were able to develop ideas for solutions to design and planning problems.
keywords Walkability; experiential knowledge; collective mapping; social web.
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2013_311
id sigradi2013_311
authors Porto Carreiro, Patrícia; Rejane de Moraes Rêgo
year 2013
title Mapas Mentais e Ferramentas Computacionais na Gestão da Informação do Processo de Ensino Projetual da Arquitetura, Urbanismo e Paisagismo [Mind Maps and Computational Tools in the Information Management in the Process of Design Teaching in Architecture, Urbanism and Landscaping]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 590 - 594
summary This article relates a teaching experience in the discipline “InfoAU II” at the CAU/UFPE/Brasil. One of the objectives is, working with the students, reflecting about the design as a multidisciplinary knowledge integration process. The other one is opening a discussion about the importance in the Information management in the process of design teaching in Architecture, Urbanism and Landscaping within digital environments. The methodology involves a construction of  mind maps on paper and digital format (using the software Prezi) as a tool for registration of design process, which it shows the requirement to get deeply in seeking methodologies and tools for a reflexive design teaching.
keywords Mind maps; Information management; Design process; Design teaching; Curriculum
series SIGRADI
email
last changed 2016/03/10 09:58

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id sigradi2013_44
id sigradi2013_44
authors Silvano Costa, Márcia; Evangelos D. Christakou; Lenildo S. Da Silva; Antônio A. Nepomuceno
year 2013
title Identificação de Danos em Fachadas de Edificações: Geração de Mosaicos Fotográficos Obtidos por Plataforma Robótica [Identification of damage on facades of buildings: Generating Mosaics Photographic obtained by Robotics Platform]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 161 - 165
summary Damage in façades rendering is a problem that has been much discussed currently since such damage is important to the degradation process of building. There are many techniques to verify damages in façades and in other external parts of buildings; however, some techniques have restrictions regarding their practical applications. This work deals with the application of the remote sensing (RM) technique. Such technique derives from the need to identify, locate and scale, quickly, accurately and without human risk, the existing damage or potential damages that may appear in the façades of buildings. Moreover, the RM technique may help to detect damages not visible at long distance or in location of difficult access. This technique is performed by corrected high-resolution panoramic images generated from a mosaic of pictures taken with a standard digital camera coupled in a robotic platform. The Itamaraty Palace, a government building, located in Brasília - DF (Brazil), is the object of the present study. The correction of the Itamaraty Palace panoramic image was carried out so that the identification, quantification and mapping of the Palace façade damages were performed using specific softwares such as GigaPan Stitch, AutoCAD and ArcGIS.
keywords Pathologies of Buildings; Panoramic Mosaics; Robotics Platform; Photos rectified and ArcGis
series SIGRADI
email
last changed 2016/03/10 10:00

_id sigradi2013_115
id sigradi2013_115
authors Verri Bastian, Andrea
year 2013
title Vetorização Automática de Ortofotos [Data visualization; Design history; Usage context, Experience; Knowledge.]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 166 - 169
summary The architectural documentation is a means of perpetuating the memory for future generations, traditional techniques applied in most studies conducted in Brazil, using direct measurements on the monument. The Photogrammetry, like lifting technique, allows metric and morphological recovery of an object without direct contact with it, and as a product of 2D - orthophotos. The focus of this work is the automatic vectorization of orthophotos, presenting experiments done with software for automatic feature extraction from orthophotos, aiming to test tools and procedures that can speed up the process for generating drawings refund.
keywords Photogrammetry; Orthophoto; Vectorization
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id 4805
authors Bentley, P.
year 1999
title Evolutionary Design by Computers Morgan Kaufmann
source San Francisco, CA
summary Computers can only do what we tell them to do. They are our blind, unconscious digital slaves, bound to us by the unbreakable chains of our programs. These programs instruct computers what to do, when to do it, and how it should be done. But what happens when we loosen these chains? What happens when we tell a computer to use a process that we do not fully understand, in order to achieve something we do not fully understand? What happens when we tell a computer to evolve designs? As this book will show, what happens is that the computer gains almost human-like qualities of autonomy, innovative flair, and even creativity. These 'skills'which evolution so mysteriously endows upon our computers open up a whole new way of using computers in design. Today our former 'glorified typewriters' or 'overcomplicated drawing boards' can do everything from generating new ideas and concepts in design, to improving the performance of designs well beyond the abilities of even the most skilled human designer. Evolving designs on computers now enables us to employ computers in every stage of the design process. This is no longer computer aided design - this is becoming computer design. The pages of this book testify to the ability of today's evolutionary computer techniques in design. Flick through them and you will see designs of satellite booms, load cells, flywheels, computer networks, artistic images, sculptures, virtual creatures, house and hospital architectural plans, bridges, cranes, analogue circuits and even coffee tables. Out of all of the designs in the world, the collection you see in this book have a unique history: they were all evolved by computer, not designed by humans.
series other
last changed 2003/04/23 15:14

_id 23bc
authors Demko, Stephen, Hodges, Laurie and Naylor, Bruce F.
year 1985
title Construction of Fractal Objects with Iterated Function Systems
source SIGGRAPH '85 Conference Proceedings. July, 1985. vol. 19 ; no. 3: pp. 271-278 : ill. col. includes bibliography
summary In computer graphics, geometric modeling of complex objects is a difficult process. An important class of complex objects arise from natural phenomena: trees, plants, clouds, mountains, etc. Researchers are investigating a variety of techniques for extending modeling capabilities to include these as well as other classes. One mathematical concept that appears to have significant potential for this is fractals. Much interest currently exists in the general scientific community in using fractals as a model of complex natural phenomena. However, only a few methods for generating fractal sets are known. We have been involved in the development of a new approach to computing fractals. Any set of linear maps (affine transformations) and an associated set of probabilities determines an Iterated Function System (IFS). Each IFS has a unique 'attractor' which is typically a fractal set (object). Specification of only a few maps can produce very complicated objects. Design of fractal objects is made relatively simple and intuitive by the discovery of an important mathematical property relating the fractal sets to the IFS. The method also provides the possibility of solving the inverse problem, given the geometry of an object, determine an IFS that will (approximately) generate that geometry. This paper presents the application of the theory of IFS to geometric modeling
keywords computer graphics, geometric modeling, fractals, visualization
series CADline
last changed 2003/06/02 13:58

_id caadria2023_305
id caadria2023_305
authors Deshpande, Rutvik, Vijay Patel, Sayjel, Weijenberg, Camiel, Nisztuk, Maciej, Corcuera, Miriam, Luo, Jianxi and Zhu, Qihao
year 2023
title Generative Pre-Trained Transformers for 15-Minute City Design
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 595–604
doi https://doi.org/10.52842/conf.caadria.2023.1.595
summary Cities globally are adopting “The 15-Minute City” as an urban response to various crises, including the Covid-19 Pandemic and climate change. However, the challenge of linking location-specific requirements with potential design solutions hinders its effective implementation. To bridge this gap, this paper introduces a novel urban 15 Minute City concept generation tool that applies an artificial intelligence (AI) method called a pre-trained language model (PLM). The PLM model was fine-tuned with structured examples based on 15-Minute City principles. Using a PLM, the tool maps 15-Minute City concepts to a location and project specific prompt, automatically generating neighbourhood design concepts in the form of natural language.
keywords 15-Minute City, neighbourhood design, data-driven design, urban design, natural language generation, Generative Pre-trained Transformer
series CAADRIA
email
last changed 2023/06/15 23:14

_id caadria2020_342
id caadria2020_342
authors Han, Yoojin and Lee, Hyunsoo
year 2020
title A Deep Learning Approach for Brand Store Image and Positioning - Auto-generation of Brand Positioning Maps Using Image Classification
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 689-696
doi https://doi.org/10.52842/conf.caadria.2020.2.689
summary This paper presents a deep learning approach to measuring brand store image and generating positioning maps. The rise of signature brand stores can be explained in terms of brand identity. Store design and architecture have been highlighted as effective communicators of brand identity and position but, in terms of spatial environment, have been studied solely using qualitative approaches. This study adopted a deep learning-based image classification model as an alternative methodology for measuring brand image and positioning, which are conventionally considered highly subjective. The results demonstrate that a consistent, coherent, and strong brand identity can be trained and recognized using deep learning technology. A brand positioning map can also be created based on predicted scores derived by deep learning. This paper also suggests wider uses for this approach to branding and architectural design.
keywords Deep Learning; Image Classification; Brand Identity; Brand Positioning Map; Brand Store Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ijac202220308
id ijac202220308
authors Rodrigues, Ricardo C; Rovenir B Duarte
year 2022
title Generating floor plans with deep learning: A cross-validation assessment over different dataset sizes
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 630–644
summary The advent of deep learning has enabled a series of opportunities; one of them is the ability to tackle subjective factors on the floor plan design and make predictions though spatial semantic maps. Nonetheless, the amount available of data grows exponentially on a daily basis, in this sense, this research seeks to investigate deep generative methods of floor plan design and its relationship between data volume, with training time, quality and diversity in the outputs; in other words, what is the amount of data required to rapidly train models that return optimal results. In our research, we used a variation of the Conditional Generative Adversarial Network algorithm, that is, Pix2pix, and a dataset of approximately 80 thousand images to train 10 models and evaluate their performance through a series of computational metrics. The results show that the potential of this data-driven method depends not only on the diversity of the training set but also on the linearity of the distribution; therefore, high-dimensional datasets did not achieve good results. It is also concluded that models trained on small sets of data (800 images) may return excellent results if given the correct training instructions (Hyperparameters), but the best baseline to this generative task is in the mid-term, using around 20 to 30 thousand images with a linear distribution. Finally, it is presented standard guidelines for dataset design, and the impact of data curation along the entire process
keywords Dataset Reduction, Pix2pix, Artificial Intelligence, Deep Generative Models, GANs
series journal
last changed 2024/04/17 14:30

_id sigradi2007_af78
id sigradi2007_af78
authors Scaletsky, Celso Carnos
year 2007
title Concept map constructions as a design strategy [Construção de Mapas Conceituais como uma estratégia de projeto]
source SIGraDi 2007 - [Proceedings of the 11th Iberoamerican Congress of Digital Graphics] México D.F. - México 23-25 October 2007, pp. 127-130
summary The construction of design scenarios for the process of generating ideas is essential to the project. This paper aims to study the possibility of using Concept Maps as tools to help designers accomplish that.
keywords Concept Maps; Design; Image; Reference; Concept
series SIGRADI
email
last changed 2016/03/10 09:59

_id acadia20_160
id acadia20_160
authors Sun, Yunjuan; Jiang, Lei; Zheng, Hao
year 2020
title A Machine Learning Method of Predicting Behavior Vitality Using Open Source Data
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 160-168.
doi https://doi.org/10.52842/conf.acadia.2020.2.160
summary The growing popularity of machine learning has provided new opportunities to predict certain behaviors precisely by utilizing big data. In this research, we use an image-based neural network to explore the relationship between the built environment and the activity of bicyclists in that environment. The generative model can produce heat maps that can be used to predict quantitatively the cycling and running activity in a given area, and then use urban design to enhance urban vitality in that area. In the machine learning model, the input image is a plan view of the built environment, and the output image is a heat map showing certain activities in the corresponding area. After it is trained, the model yields output (the predicted heat map) at an acceptable level of accuracy. The heat map shows the levels and conditions of the subject activity in different sections of the built environment. Thus, the predicted results can help identify where regional vitality can be improved. Using this method, designers can not only predict the behavioral heat distribution but also examine the different interactions between behaviors and aspects of the environment. The extent to which factors might influence behaviors is also studied by generating a heat map of the modified plan. In addition to the potential applications of this approach, its limitations and areas for improvement are also proposed.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2019_640
id caadria2019_640
authors Zhang, Ruocheng, Tong, Hanshuang, Huang, Weixin and Zhang, Runzhou
year 2019
title A Generative Design Method for the Functional Layout of Town Planning based on Multi-Agent System
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 231-240
doi https://doi.org/10.52842/conf.caadria.2019.2.231
summary In recent years, with the development of artificial intelligence and digital architecture, more architects begin to wonder how to generate urban planning and urban design through computational method. For the purpose of generating urban planning digitally using computational algorithms, we design a series of algorithms to develop a system that evaluates initial features of the site such as the strength of sunlight, water, landscape. These parameters related to the function zoning of the town were determined based on the data extracted from case studies. These data were integrated into a Markov chain mathematical model for the sake of analyzing the function of grid points. Finally, an algorithm of a multi-agent system was used to optimize the function that could evaluate the grade of each raster point of the town, which could be used to decide the function of a specific region.
keywords Generative design, Town planning,Multi-agent system, Data analysis
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_337
id sigradi2013_337
authors Al-Haddad, Tristan; Keyan Rahimzadeh; Jill Fredrickson
year 2013
title Concrete Continuum: Concept, Calculus, & Construction Connected Through Parametric Representation
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 230 - 234
summary This paper outlines a custom-built suite of scripts that automate the processes of reinforced concrete design and is directly linked to the parametric design model of the architect. The workflow creates a design and engineering feedback loop for early phase schematic design. Using this system, the design geometry is generated and then deconstructed into a Finite Element model. The workflow executes a static analysis then calculates rebar size and placement, and finally generates fabrication drawings. This methodology allows architectural intent and engineering analysis to be collapsed into a single non-linear design process.
keywords Parametric design; Digital fabrication; Reinforced concrete; Production automation; Design feedback proces
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
doi https://doi.org/10.52842/conf.caadria.2014.285
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 284HOMELOGIN (you are user _anon_434500 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002