CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2059

_id caadria2014_044
id caadria2014_044
authors Huang, Alvin; Stephen Lewis and Jason Gillette
year 2014
title Pure Tension: Intuition, Engineering & Fabrication
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 171–180
doi https://doi.org/10.52842/conf.caadria.2014.171
summary The "PURE Tension" Pavilion is a lightweight, rapidly deployable, tensioned membrane structure and portable charging station commissioned by Volvo Car Italia to showcase the new Volvo V60 Hybrid Electric Diesel car. Officially launched in Milan, Italy in October 2013, this experimental structure was developed through a process of rigorous research and development that investigated methods of associative modelling, dynamic mesh relaxation, geometric rationalization, solar incidence analysis, membrane panelling, and material performance. It is an experimental structure that, similar to a concept car, is a working prototype that speculates on the potential future of personal mobility and alternative energy sources for transportation while also exploring digital design methodologies and innovative structural solutions. This paper will illustrate the design, development and fabrication processes involved in realizing this structure.
keywords Form-finding; dynamic-mesh relaxation; geometric rationalisation; patterning, digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia13_337
id acadia13_337
authors Rippmann, Matthias; Block, Philippe
year 2013
title Funicular Shell Design Exploration
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 337-346
doi https://doi.org/10.52842/conf.acadia.2013.337
summary This paper discusses the design exploration of funicular shell structures based on Thrust Network Analysis (TNA) The presented graphical form finding approach and its interactive, digital-tool implementation target to foster the understanding of the relation between form and force in compression curved surface structures in an intuitive and playful way. Based on this understanding, the designer can fully take advantage of the presented method and digital tools to adapt the efficient structural system to the specific needs of different architectural applications. The paper focuses on simple examples to visualize the graphical concept of various modification techniques used for this form finding approach. Key operations and modifications have been identified and demonstrate the surprisingly flexible and manifold design space of funicular form. This variety of shapes and spatial articulation of funicular form is further investigated by discussing several built prototypes.
keywords funicular design; structural form finding; thrust network analysis; real-time structural design tools; interactive; compression shells
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2014_124
id caadria2014_124
authors Williams, Nicholas; Sascha Bohnenberger and John Cherrey
year 2014
title A System for Collaborative Design on Timber Gridshells
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 441–450
doi https://doi.org/10.52842/conf.caadria.2014.441
summary The bent timber laths of the Sound Bites gridshell create two types of performance space over an area of almost 100 m2. Such postformed gridshells are a wellestablished design solution for creating curved forms from linear elements. Extending principles developed since the 1970s, contemporary digital tools have been utilised to drive a renewed interest in them, primarily through so-called form-finding techniques which connect digital and material models through a simulation of shape under bending loads (Nettlebladt, 2013) and the definition of efficient structural geometry acting under compression loads only (Hernandez et. al., 2012). This paper describes the workflow conceived and implemented for the Sound Bites structure. A central challenge of the research was for such a workflow to allow for the principles of gridshell design to be engaged in parallel to other tight constraints and design drivers. As such it needed to facilitate close collaboration between architectural, engineering and fabrication experts. This workflow was tested in the design and realisation of the full-scale structure within a six-week period. The gridshell design was developed through the manipulation of the shape of two edge profiles and the shell form spanning between these. Architectural and fabrication constraints were met and the workflow allowed for a sufficient level of structural analysis to be fed back to inform the design.
keywords Digital Workflow; Collaborative Design; Digital Formfinding; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2021_241
id ecaade2021_241
authors Bitting, Selina, Azadi, Shervin and Nourian, Pirouz
year 2021
title Reconfigurable Domes - Computational design of dry-fit blocks for modular vaulting
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 263-274
doi https://doi.org/10.52842/conf.ecaade.2021.1.263
summary In contrast to the contemporary aesthetic account, Muqarnas are geometrically complex variations of Squinches used for structural integration of rectilinear geometries and curved geometries. Inspired by the historical functionality of Muqarnas, we present a generalized computational workflow for generating dry-fit stacking modules from two-dimensional patterns in order to construct a dome. Similar to Muqarnas these blocks are modular in nature, complex in geometry, and compression-only in their structural behavior. We demonstrate the design of such structures based on the exemplary Penrose pattern and showcase the variations & potentials of this method in comparison to conventional approaches.
keywords Muqarnas; Generative Design; Modular Design; Unreinforced Masonry Architecture; Penrose Tiling; Workflow Design
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia20_226p
id acadia20_226p
authors Borhani, Alireza; Kalantar, Negar
year 2020
title Interlocking Shell
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 226-231
summary With a specific focus on robotic stereotomy, two full-scale vault structures were designed to explore the potential of self-standing building structures made from interlocking components; these structures were fabricated with a track-mounted industrial-scale robot (ABB 4600). To respond to the economic affordances of robotic subtractive cutting, all uniquely shaped structural modules came from one block of material (48"" x96"" x36""). Through the discretization of curvilinear tessellated vault surfaces into a limited number of uniquely shaped modules with embedded form-fitting connectors, the project exhibited the potential for programming a robot to cut ruled surfaces to produce freeform shells of any kind. Representing nearly zero-waste construction, the developed technology can potentially be used for self-supporting emergency shelters and field medical clinics, facilitating easy shipping and speedy assembly. Without using any scaffolding, a few people can erect and dismantle an entire mortar-free structure at the construction site. The disassembled structure occupies minimal space in storage, and the structure’s pieces can be transported to the site in stacks. Robot milling is a common technique for removing material to transform a block into a sculptural shape. Unlike milling techniques that produce significant waste, we used a hotwire that sliced through a Geofoam block to create almost no waste pieces. Since the front side of every module was concurrent with the backside of the next one, such a decision allowed to operate just one cut per front side of each module. In this case, by having three cuts, two neighboring modules were fabricated. The form of the structure and its modules emerged from the constraints of the fabrication technique, aiming to establish a feedback loop between geometry, material, simulation, and tool. By cross-referencing geometric data across Grasshopper, a customized tessellation script was made to breakdown a vault into its modular ruled surface constructs.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ascaad2023_090
id ascaad2023_090
authors Busbait, Omar; Reinhardt, Dagmar; Globa, Anastasia
year 2023
title Human-Robot Craft Transfer: Learning from Nabateans Carving Out Methods,Techniques, and Tools
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 154-165.
summary Traditional methods of carving trenches have been used by Nabateans in quarries locations for centuries, including carving out a large block out of a mass solid of sandstone and continuing carving out processes. This research explores the strategies for sculpting and the structural feasibility needed to assist methods of design generation in tangent. It traces tools and processes used in cutting large blocks for stone quarries and rock-cut buildings for efficient and sustainable methods to train an industrial robot. The research aims to support a revival of the historical global phenomenon approach of carved-out buildings through advanced technologies for fabrication. Through knowledge derived from traditional stone cutting, robotic subtractive/additive processes and robotic fabrication and assembly, the paper aims to develop case studies. By reviewing the current state of the art in digital sandstone carving, and prototyping, the paper discusses craftsmanship and technological development through the concept of carved-out in solid, applied in the context of advanced fabrication and robotic adaptation. This paper reports on a parallel study of the traditional methods of cutting a block out of a solid from one side and the robot adoption of the ancient tools and methods by testing processes iteratively; first through manual investigation and secondly through robotic simulation and tooling with Styrofoam as homogeneous material replacement. The paper discusses the results of digital fabrication and novel knowledge for the human–robot craft transfer.
series ASCAAD
email
last changed 2024/02/13 14:40

_id ecaade2017_044
id ecaade2017_044
authors Fernando, Shayani, Reinhardt, Dagmar and Weir, Simon
year 2017
title Simulating Self Supporting Structures - A Comparison study of Interlocking Wave Jointed Geometry using Finite Element and Physical Modelling Methods
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 177-184
doi https://doi.org/10.52842/conf.ecaade.2017.2.177
summary Self-supporting modular block systems of stone or masonry architecture are amongst ancient building techniques that survived unchanged for centuries. The control over geometry and structural performance of arches, domes and vaults continues to be exemplary and structural integrity is analysed through analogue and virtual simulation methods. With the advancement of computational tools and software development, finite and discrete element modeling have become efficient practices for analysing aspects for economy, tolerances and safety of stone masonry structures. This paper compares methods of structural simulation and analysis of an arch based on an interlocking wave joint assembly. As an extension of standard planar brick or stone modules, two specific geometry variations of catenary and sinusoidal curvature are investigated and simulated in a comparison of physical compression tests and finite element analysis methods. This is in order to test the stress performance and resilience provided by three-dimensional joints respectively through their capacity to resist vertical compression, as well as torsion and shear forces. The research reports on the threshold for maximum sinusoidal curvature evidenced by structural failure in physical modelling methods and finite element analysis.
keywords Mortar-less; Interlocking; Structures; Finite Element Modelling; Models
series eCAADe
email
last changed 2022/06/07 07:50

_id 25a3
authors Martini, K.
year 1998
title Ancient structures and modern analysis: investigating damage and reconstruction at Pompeii
source Automation in Construction 8 (1) (1998) pp. 125-137
summary The paper describes the application of non-linear structural analysis methods to address archaeological questions concerning the reconstruction of the ancient city of Pompeii after a major earthquake that occurred 17 yr prior to the famous eruption of Mt. Vesuvius in 79 AD. It presents preliminary findings in an effort to develop an approach to modelling the two-way out-of-plane behavior of unreinforced masonry walls, including comparison studies with published analytic and experimental results for one-way loaded walls, plus a trial analysis for a two-way span condition. The approach requires the application of computationally intensive non-linear analysis techniques, since the linear analysis methods used in conventional design and education are inadequate to model the behavior of unreinforced masonry. Developing an understanding of the two-way behavior of unreinforced masonry has implications not only for archaeological investigation of ancient structures, but also for modern renovation of historic structures.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 69fb
authors Martini, Kirk
year 1997
title Ancient Structures and Modern Analysis: Investigating Damage and Reconstruction at Pompeii
source Design and Representation [ACADIA ‘97 Conference Proceedings / ISBN 1-880250-06-3] Cincinatti, Ohio (USA) 3-5 October 1997, pp. 283-293
doi https://doi.org/10.52842/conf.acadia.1997.283
summary The paper describes the application of non-linear structural analysis methods to address archaeological questions concerning the reconstruction of the ancient city of Pompeii after a major earthquake that occurred seventeen years prior to the famous eruption of Mt. Vesuvius in 79 AD. It presents preliminary findings in an effort to develop an approach to modeling the two-way out-of-plane behavior of unreinforced masonry walls, including comparison studies with published analytic and experimental results for one-way loaded walls, plus a trial analysis for a two-way span condition. The approach requires the application of computationally intensive non-linear analysis techniques, since the linear analysis methods used in conventional design and education are inadequate to model the behavior of unreinforced masonry. Developing an understanding of the two-way behavior of unreinforced masonry has implications not only for archaeological investigation of ancient structures, but also for modern renovation of historic structures.

series ACADIA
email
last changed 2022/06/07 07:59

_id ecaade2024_147
id ecaade2024_147
authors Wang, Xiaolu; Liu, Ying; Liu, Hanfang
year 2024
title Integration of Photogrammetric Survey Technique with Hygrothermal Assessment for Architectural Heritage Survey and Analysis: A case study of Dragon Pagoda in China
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 229–237
doi https://doi.org/10.52842/conf.ecaade.2024.2.229
summary The integration of photogrammetric survey techniques with hygrothermal assessment offers a comprehensive approach to architectural heritage survey and analysis. This study focuses on the Dragon Pagoda in China, constructed during the Yuan Dynasty using limestone and traditional brick masonry. By leveraging photogrammetry, highly reliable 3D models capturing the spatial and textural characteristics of the Pagoda are generated. These models are then integrated into hygrothermal simulations using WUFI Plus to assess the building's structural health and resilience against weathering processes such as surface recession, thermal stress, and freeze-thaw cycles. The study demonstrates that climate parameters significantly impact the deterioration of stone building materials. The results from the hygrothermal simulations reveal detailed insights into the temperature and humidity transfer within the Pagoda's materials, enabling a thorough damage risk assessment. The innovative combination of photogrammetric data with hygrothermal assessments provides valuable insights for the long-term preservation and restoration of historical buildings, addressing the challenges posed by climate change and ensuring the durability of cultural heritage structures.
keywords Culture Heritage, Photogrammetry, Hygrothermal Assessment, Health Monitoring of Aged Buildings
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2023_311
id caadria2023_311
authors Wu, Hao, Gu, Sijia, Gao, Xiaofan, Luo, Jiaxiang and F. Yuan*, Philip
year 2023
title Extrusion-to-Masoning: Robotic 3D Concrete Printing of Concrete Shells As Building Floor System
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 139–148
doi https://doi.org/10.52842/conf.caadria.2023.2.139
summary Efficient floor systems can reduce the carbon footprint of building industry by reducing material, thereby responding to the UN Sustainable Development Goals (SDGs). Tile vault, a kind of masonry shell structure in history, can provide inspiration for extrusion-based 3D concrete printing. In this research, an “Extrusion-to-Masoning” perspective is proposed to evaluate, analysis, and simulate 3DCP. The variable-width filaments of 3DCP can be interpreted as variable-width bricks. The staggering pattern between different layers is studied. Three concrete shells with different layer-staggering patterns are printed and quantitative structural testing experiments are carried out. Then a totally printed floor slab prototype is designed and fabricated at the basis of one of the shells.
keywords 3d concrete printing, tile vault, concrete shell, efficient floor slab, extrusion-to-masoning
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
doi https://doi.org/10.52842/conf.acadia.2011.114
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id acadia13_391
id acadia13_391
authors Abbasy-Asbagh, Ghazal
year 2013
title [re]folding Muqarnas: A case study
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 391-392
doi https://doi.org/10.52842/conf.acadia.2013.391
summary This project uses folded surface as a mechanism to make a historically non-structural system, Muqarnas, into one that combines surface and structure.
keywords structural optimization, folded surface, cultural landscapes, muqarnas, complex geometry
series ACADIA
type Design Poster
email
last changed 2022/06/07 07:54

_id acadia13_281
id acadia13_281
authors Ahlquist, Sean; Menges, Achim
year 2013
title Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 281-292
doi https://doi.org/10.52842/conf.acadia.2013.281
summary Material behavior can be defined as the confluence of associative rules, contextual pressures and constraints of materialization. In more general terms, it can be parameterized as topologies, forces and materiality. Forming behavior means resolving the intricate matrix of deterministic and indeterministic factors that comprise and interrelate each subset of these material- nherent conditions. This requires a concise design framework which accumulates the confluent behavior through successive and cyclical exchange of multiple design modes, rather than through a single design environment or set of prescribed procedures. This paper unfolds a sequencing of individual methods as part of a larger design framework, described through the development of a series of complex hybrid- structure material morphologies. The “hybrid” nature reflects the integration of multiple force-active structural concepts within a single continuous material system, devising both self-organized yet highly articulated spatial conditions. This leads primarily to the development of what is termed a “textile hybrid” system: an equilibrium state of tensile surfaces and bending-active meshes. The research described in this paper looks to expose the structure of the textile as an indeterministic design parameter, where its architecture can be manipulated as means for exploring and differentiating behavior. This is done through experimentation with weft-knitting technologies, in which the variability of individual knit logics is instrumentalized for simultaneously articulating and structuring form. Such relationships are shown through an installation constructed at the ggggallery in Copenhagen, Denmark.
keywords Material Behavior, Spring-based Simulation, CNC Knitting, Form- and Bending-Active, Textile Hybrid Structures.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
doi https://doi.org/10.52842/conf.caadria.2014.285
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_111
id ecaade2013_111
authors Androutsopoulou, Eirini
year 2013
title Urban Body Mutations through the Use of the Network Configuration
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 275-281
doi https://doi.org/10.52842/conf.ecaade.2013.1.275
wos WOS:000340635300028
summary Taking as a starting point the hypotheses that the urban body is a self-adapted ecology made of material and non-material components (Bateson, 1972), relationships between elements are examined in an attempt to destabilize the static division of matter and idea and to inquire into those relationships that determine the structural coupling (Maturana, 2002) between body and environment, as well as the constitution of the body itself. Contemporary technology is used in order to trace these alterations and the urban body is examined as a network configuration. The importance of the methodology adopted by the current research lies in the fact that social and economic factors merge with spatial characteristics, allowing for a visualization and re-interpretation of the urban body mutations based on self-adapted reconfigurations and for a prediction of the structural alterations made possible through the reconfiguration of the synaptic forces between elements.
keywords Mutation; urban body; visualization techniques; network; data manipulation.
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
wos WOS:000340635300060
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2013_210
id caadria2013_210
authors Baerlecken, Daniel; Katherine Johnson and Alice Vialard
year 2013
title Mobilized Materials – Textile Constructs
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 333-342
doi https://doi.org/10.52842/conf.caadria.2013.333
wos WOS:000351496100033
summary This paper investigates textiles techniques and their potential for creating ornamental and structural systems investigated through a sequence of design studios. Within the paper 3 examples of textile systems are introduced that range from a Semperian approach (wall as dress) to form finding experiments with active textile materials (Frei Otto).  
keywords extiles, Form-finding, Analogue computing, Design methodology, Craft  
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_113
id ecaade2013_113
authors Becker, Mirco and Rumpf, Moritz
year 2013
title Heat-Pressure Lamination
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 643-651
doi https://doi.org/10.52842/conf.ecaade.2013.1.643
wos WOS:000340635300067
summary Fabrication techniques and design potential of up-cycling plastic bags by heat-pressure lamination are explored. The material properties are tested and put into a digital design system. The main performance criteria is structure. Two design prototypes are being discussed. The first one is using a set of modular molds and a second one a techniques of inflated cushions resulting in shapes closely matching these in curved folding.
keywords Digital-low-tech; fabrication; up-cycling; structural analysis; curved folding; design exploration.
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
doi https://doi.org/10.52842/conf.acadia.2013.061
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 102HOMELOGIN (you are user _anon_843027 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002