CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 14644

_id ga0215
id ga0215
authors Kabala, Joanna
year 2002
title The Side Effect of a Generative Experiment
source International Conference on Generative Art
summary This paper discusses the issue expressed in the call for the Generative Art 2002 conference that says: "GA is identifiable as one of the most advanced approaches in creative and design world." In this paper the value of Generative Art for the art, science and design worlds is described in the reference to a generative experiment. The experiment has been conducted in industrial environment with the aim of defining possibilities for natural interaction of humans with machines. In specific, the experiment examined an option for visual adaptation in accordance to user feedback. In the context of the experiment's outcome the issue of recognizability of Generative Art values is discussed. Generative Art can be identified but is not widely recognized as "one of the most advanced approaches in creative and design world". What makes it difficult for designers to switch to generative thinking and accept immediately Generative Art as the possible way of advancing traditional design methods? And what makes it promising to keep searching for ways of application of Generative Art in contemporary design? Some possible answers, proposed in this paper, aim at contributing to the discussion about the changing role of artists and designers in the contemporary society.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id sigradi2021_70
id sigradi2021_70
authors Kabošová, Lenka, Chronis, Angelos, Galanos, Theodore and Katunský, Dušan
year 2021
title Leveraging Urban Configurations for Achieving Wind Comfort in Cities
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 79–90
summary Given the continuous improvements in digital design and analysis tools, designing in line with the environmental conditions can be much more seamlessly integrated into the conceptual design stage. That leads to faster, informed design decisions and, if incorporated into day-to-day practice, to a sustainable built environment. The presented design method, focusing on enhancing the outdoor wind comfort through architecture, leverages wind analysis tools, such as newly-developed InFraRed, verified by other Grasshopper plug-ins, in the urban design process. As shown in the case study, iterating through various design options and evaluating their impact on the wind flow is faster yet precise, leading towards picking the best-performing design alternative in terms of outdoor wind comfort.
keywords real-time wind predictions, wind comfort, parametric design, CFD analysis, machine learning
series SIGraDi
email
last changed 2022/05/23 12:10

_id ecaadesigradi2019_305
id ecaadesigradi2019_305
authors Kabošová, Lenka, Worre Foged, Isak, Kmeť, Stanislav and Katunský, Dušan
year 2019
title Building envelope adapting from and to the wind flow
doi https://doi.org/10.52842/conf.ecaade.2019.2.131
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 131-138
summary The paper presents research for wind-responsive architecture. The main objective is the digital design methodology incorporating the dynamic, fluctuating wind flow into the shape-generating process of architectural envelopes. These computational studies are advanced and informed through physical prototyping models, allowing a hybrid method approach. The negative impacts of the wind at the building scale (wind loads), as well as urban scale (wind discomfort), can be avoided and even transformed into an advantage by incorporating the local wind conditions to the process of creating architectural envelopes with adaptive structures. The paper proposes a tensegrity-membrane system which, when exposed to the dynamic wind flow, enables a local passive shape adaptation. Thus, the action of the wind pressure transforms the shape of the building envelope to an unsmoothed, dimpled surface. As a consequence, the aerodynamic properties of the building are modified, which contributes to reducing wind suction and drag force. Moreover, the slight shape change materializes and articulates the immaterial wind phenomena. For a better understanding of the dynamic geometric properties, one unit of the wind-responsive envelope is tested through simulations, and through physical prototypes. The idea and material-geometric studies are subsequently applied in a specific case study, including a designed building envelope in an industrial silo cluster in Stockholm.
keywords adaptive envelope; tensegrity; wind flow; digital designing; shape-change
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ijac202220302
id ijac202220302
authors Kabošová, Lenka; Angelos Chronis; Theodoros Galanos
year 2022
title Fast wind prediction incorporated in urban city planning
source International Journal of Architectural Computing 2022, Vol. 20 - no. 3, pp. 511–527
summary Digital design and analysis tools are continually progressing, enabling more seamless integration of climatic impacts into the conceptual design stage, which naturally means enhanced environmental performance of the final designs. Planning sustainable urban configurations and, consequently, environment-derived architectural forms becomes more rapid and requires less effort enabling smooth incorporation into day-to-day practice. This research paper presents a wind prediction-based architectural design method for improving outdoor wind comfort through urbanism and architecture. The added value of the environment-driven design loop consisting of parametric design, wind flow analysis, and necessary design modifications lies in leveraging the newly developed wind prediction tool InFraRed. As is demonstrated in the application study in Kosice, Slovakia, iterating through various design options and evaluating their impact on the wind flow is swift and reliable. That enables the designer to explore the best-performing design alternatives for outdoor wind comfort, yet the extra time required for the analysis is negligible
keywords real-time wind predictions, wind comfort, parametric design, computational fluid dynamics analysis, machine learning, infrared
series journal
last changed 2024/04/17 14:29

_id ijac201917401
id ijac201917401
authors Kabošová, Lenka; Isak Foged, Stanislav Kmet’ and Dušan Katunský
year 2019
title Hybrid design method for wind-adaptive architecture
source International Journal of Architectural Computing vol. 17 - no. 4, 307-322
summary The linkage of individual design skills and computer-based capabilities in the design process offers yet unexplored environment-adaptive architectural solutions. The conventional perception of architecture is changing, creating a space for reconfigurable, “living” buildings responding, for instance, to climatic influences. Integrating the element of wind to the architectural morphogenesis process can lead toward wind-adaptive designs that in turn can enhance the wind microclimate in their vicinity. Geometric relations coupled with material properties enable to create a tensegrity- membrane structural element, bending in the wind. First, the properties of such elements are investigated by a hybrid method, that is, computer simulations are coupled with physical prototyping. Second, the system is applied to basic- geometry building envelopes and investigated using computational fluid dynamics simulations. Third, the findings are transmitted to a case study design of a streamlined building envelope. The results suggest that a wind-adaptive building envelope plays a great role in reducing the surface wind suction and enhancing the wind microclimate.
keywords Wind, computational fluid dynamics, tensegrity structure, responsive envelope, computational design
series journal
email
last changed 2020/11/02 13:34

_id cf2011_p020
id cf2011_p020
authors Kabre, Chitrarekha
year 2011
title A Computer Aided Design Model for Climate Responsive Dwelling Roof
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 315-332.
summary Computer-Aided Design models have generated new possibilities in the sustainable design of buildings. Computer models assisting different aspects of architectural design have been developed and used for several decades. A review of contributions of computing to architectural design is given by Gero. Most of the conventional simulation computer programs do not actively support design development and optimization, specially at the formative design stages. It is well established that most decisions that affect comfort and building energy use occur during the formative design stages of the project. Furthermore, the efforts required to implement those decisions at the beginning of the design process are small compared to the effort that would be necessary later on in the design process. Therefore, if sustainable design issues are going to receive an appropriate level of consideration at the beginning of the design process, they must be presented in a way which is useful to the architect and fits with other things the architect is considering at that time. Design is seen as a problem-solving process of searching through a space of design solutions. The process of finding a solution to a design problem involves, identifying one or more objectives, making design decisions based on the objectives, predicting and evaluating the performance to find the acceptable decisions. Each of these activities can be performed inside or outside the formal model. In designing a roof, an architect or building designer has to make many decisions on the materials. The arrangement of these materials determines the aesthetic appearance of the roof and the house. Other considerations that affect the choice of roofing materials are thermal performance, rain, fire protection, cost, availability and maintenance. Recyclability of materials, hazardous materials, life-cycle expectancy, solutions, and design options as they relate to the environment also need to be considered. Consequently, the design of roof has become quite a complex and multifaceted problem. The principal need is for a direct design aid which can generate feasible solutions and tradeoff performance in conflicting requirements and prescribe the optimum solution. This paper presents a conceptual Computer Aided Design model for dwelling roof. It is based on generation and optimization paradigms of Computer Aided Design; which is diametrically opposite to conventional simulation. The design of roof (design goal) can be defined in terms of design objective as "control radiant and conduction heat." This objective must be satisfied to achieve the design goal. The performance variables, such as roof ceiling surface temperature or new thermal performance index (TPI*) must acquire values within certain ranges which will satisfy the objective. Given the required inputs, this computer model automatically generates prescriptive quantitative information to design roof to achieve optimum thermal comfort in warm humid tropics. The model first generates feasible solutions based on the decision rules; next it evaluates the thermal performance of the roof taking into account design variables related to the building’s roof and finally it applies numerical optimization techniques to automatically determine the optimum design variables, which achieve the best thermal performance. The rational and methodology used to develop the proposed model is outlined and the implementation of model is described with examples for climatic and technological contexts of India and Australia.
keywords Computer aided design, sustainable design, generation, optimization, dwelling roof, thermal performance
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2008_48_session5a_391
id caadria2008_48_session5a_391
authors Kacher, S.; G. Halin
year 2008
title An analyse of experiment results to improve an image indexation method: Application to the design process
doi https://doi.org/10.52842/conf.caadria.2008.391
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 391-398
summary In our research work we proposed a method to construct an image data base from which designers can find solutions for their design problem. In our approach, an image is not only a media representing existing objects or existing scenes, but it is a support which allow the designer to advance in solving his problem. In this paper we tackle the particular question of the analyses of the results obtained thanks to an experiment which aims to validate a method to index and retrieve images. The objective of this experiment is to evaluate the real contribution of the images retrieved by our system to the designer when he looks for solutions to a design problem. By the analyse of the indexation terms we aim to evaluate the real help that this reference image database can bring to the designer during his creation work.
keywords Image database, indexing process, design process, thesaurus describers
series CAADRIA
email
last changed 2022/06/07 07:52

_id ijac20053205
id ijac20053205
authors Kacher, Sabrina; Halin, Gilles; Bignon, Jean-Claude; Humbert, Pascal
year 2005
title A method for Constructing a Reference Image Database to Assist with Design Process. Application to the Wooden Architecture Domain
source International Journal of Architectural Computing vol. 3 - no. 2, 227-244
summary Designing architectural projects requires the introduction of references, because design is an activity oriented towards a result which does not yet exist. If we summarise the current categories used in Artificial Intelligence to characterise the different forms of reasoning, we are able to consider that design is more the concern of the induction or the abduction mechanism than the deduction mechanism. Moreover, the main characteristic of the designer's activity is to work towards non-routine situations with the use of many references. In this paper we will present method principles to construct a reference image database. These references will enable the designer to further in solving the design problem. To illustrate these reference usage, we choose photographic images belonging to the wooden construction domain We also present at the end of the paper an experiment which aims to evaluate the real help that this reference image database can bring to designers during their creation task.
series journal
last changed 2007/03/04 07:08

_id e892
authors Kacmar, Charles John
year 1990
title PROXHY: a Process -Oriented Extensible Hypertext Architecture
source Texas A&M University
summary This research describes a new architecture for hypertext environments. The architecture merges the process, object-oriented, and hypertext models to provide hypertext services to object-based, distributed, application components. Through this architecture, applications are integrated to form a comprehensive hypertext computing environment, allowing links to connect applications or objects in different applications. The architecture separates hypertext and application functionality so that multiple applications can use the facilities of a common hypertext layer. The design of the architecture is such that components can be extended or tailored in order to support future applications, multimedia objects, or the needs of specific applications or users. The process-based, object-oriented framework allows objects of arbitrary complexity to live and interact in a hypertext world. Additionally, the protocol and facilities which support component interaction provide location transparency, arbitrary object granularity, and parallel computation over a network. This dissertation provides a conceptual model of hypertext and a general architecture for hypertext system construction. Related literature from object-oriented programming, operating systems, multimedia applications, and database is discussed in terms of the architecture. A hypertext data model, computational model, and hypertext system taxonomy are used to discuss the capabilities of current hypertext systems. Interaction scenarios are provided in order to illustrate object interaction and the distribution of work among the components of the architecture. A prototype system, implemented to demonstrate the feasibility of the architecture, is discussed. The prototype illustrates all aspects of the architecture including distributed application and hypertext components, cross-application linking, and anchors acting as proxy objects for applications. Application scenarios, problems and limitations, and future research issues provide an understanding of the power of the architecture and its potential for impacting the design of next-generation hypertext systems.  
series thesis:PhD
last changed 2003/02/12 22:37

_id acadia11_114
id acadia11_114
authors Kaczynski, Maciej P; McGee, Wes; Pigram, David
year 2011
title Robotically Fabricated Thin-shell Vaulting: A method for the integration of multi-axis fabrication processes with algorithmic form-finding techniques
doi https://doi.org/10.52842/conf.acadia.2011.114
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 114-121
summary This paper proposes and describes a new methodology for the design, fabrication, and construction of unreinforced thin-shell stone vaulting through the use of algorithmic form-finding techniques and multi-axis robotic water jet cutting. The techniques build upon traditional thin-shell masonry vaulting tectonics to produce a masonry system capable of self-support during construction. The proposed methodology expands the application of thin-shell vaulting to irregular forms, has the potential to reduce the labor cost of vault construction, and opens the possibility of response to external factors such as siting constraints and environmental criteria. The intent of the research is to reignite and reanimate unreinforced compressive masonry vaulting as a contemporary building practice.
keywords masonry vaulting; robotic fabrication; water-jet cutting; multi-axis fabrication; dynamic relaxation; file-to-factory; form-finding; self-supporting; parametric modeling; computational design
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id architectural_intelligence2024_32
id architectural_intelligence2024_32
authors Kaden Chaudhary, Annika Pan, Hongxi Yin, Ming Qu, Cindy Wang & David Yi
year 2024
title The PreDI matrix-a common terminology for offsite construction: definition, verification, and demonstration in environmental impact studies
doi https://doi.org/https://doi.org/10.1007/s44223-024-00069-w
source Architectural Intelligence Journal
summary Given the increasing interest in offsite construction and the prefabricated components it produces, this paper aims to establish a common matrix, the PreDI, for the offsite construction industry. The effort is to enhance the comparability of research and practices in offsite construction, making it more universally understood. Offsite construction involves manufacturing components in a factory and then assembling them on-site. It is considered a more sustainable approach due to less material usage, energy consumption, and waste generation during component fabrication. However, the lack of common terminology for offsite construction poses many challenges in the industry and its research, hindering communication and research. The Prefabricated Dimensions and Integrations (PreDI) matrix, developed in the study, provides a solution for industry and research use. Thus, industry and academia can utilize the PreDI widely, accurately, and precisely in communication. This paper demonstrates the PreDI matrix’s application in life cycle assessment research on offsite construction, showcasing its utility and setting the stage for more robust research analyses in the future. Using the PreDI matrix in 24 U.S. Department of Energy Solar Decathlon houses further highlights its potential in the industry. Finally, the paper concludes with a broader outlook on its impacts on offsite construction.
series Architectural Intelligence
email
last changed 2025/01/09 15:05

_id caadria2020_088
id caadria2020_088
authors Kado, Keita, Furusho, Genki, Nakamura, Yusuke and Hirasawa, Gakuhito
year 2020
title rocess Path Derivation Method for Multi-Tool Processing Machines Using Deep-Learning-Based Three Dimensional Shape Recognition
doi https://doi.org/10.52842/conf.caadria.2020.2.609
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 609-618
summary When multi-axis processing machines are employed for high-mix, low-volume production, they are operated using a dedicated computer-aided design/ computer-aided manufacturing (CAD/CAM) process that derives an operating path concurrently with detailed modeling. This type of work requires dedicated software that occasionally results in complicated front-loading and data management issues. We proposed a three-dimensional (3D) shape recognition method based on deep learning that creates an operational path from 3D part geometry entered by a CAM application to derive a path for processing machinery such as a circular saw, drill, or end mill. The methodology was tested using 11 joint types and five processing patterns. The results show that the proposed method has several practical applications, as it addresses wooden object creation and may also have other applications.
keywords Three-dimensional Shape Recognition; Deep Learning; Digital Fabrication; Multi-axis Processing Machine
series CAADRIA
email
last changed 2022/06/07 07:52

_id e902
authors Kadysz, A.
year 1996
title Alternative Space for Creation
source CAD Creativeness [Conference Proceedings / ISBN 83-905377-0-2] Bialystock (Poland), 25-27 April 1996 pp. 137-145
summary What is a computer in the hands of an architect? What it can develop into? This paper is an attempt at determining the main limitations and possibilities of the digital-circuit engineering with regard to the creation of three-dimensional forms. All the limitations seem to have a common reason, namely the user's lack of self-awareness. It is user who decides whether the instrument is just a secondary carrier of information about the designed object or whether it serves as a medium for the creation of three-dimensional designs, an environment for the incubation and presentation of the very idea. The reader will find here some remarks on creation in virtual space as a separate phenomenon of creating forms which are no longer restricted by reality. It presents a global computer network on the threshold of the era of three-dimensional virtual space with unlimited creation possibilities.
series plCAD
last changed 1999/04/09 15:30

_id 0726
authors Kadysz, Andrzej
year 1994
title CAD the Tool
doi https://doi.org/10.52842/conf.ecaade.1994.x.k7r
source The Virtual Studio [Proceedings of the 12th European Conference on Education in Computer Aided Architectural Design / ISBN 0-9523687-0-6] Glasgow (Scotland) 7-10 September 1994, p. 212
summary What is the role of CAAD as a tool of architectural form creation ? We used to over-estimate the role of computer as significant factor of design process. In fact it serves only to produce technical documentation and to visualise designed buildings. We usually use CAAD to record ideas, not to create designs. We use it like more complex pencil. But it is unsuitable for conceptual design , with imperceptible influence on idea definition. Its practical usefulnes is limited. I would like to consider and find out reasons of that state, present some conclusions and ideas on computer aided architectural form creation. Many tools were invented to extend posibilities of human body or intellect. Microscop and telescop are extensions of human eye. Which organ is extended by computer (especially by CAAD)? CAAD with high developed function of visualising of the object beeing designed seems to be an extension of architect's imagination. It is beeing used to foresee visual efects, to check designed forms, to see something what we are not able to imagine. It performes the role of electronic modeler. Real model and virtual model - the medium of presentation is diferent but ways of using them are similar . Dislocation of place where we build model is not a big achievement, but potential possbilities of CAAD in modeling are almost unlimited (?). What are special features of CAAD as a modeling tool? First we have to consider what is indispensible when building a model: to embody idea. To do this we need space, substance and tools. In architectural design practice space is a real site with definite climate, neigbourhood, orientation. Substance that we shape is an archiectural form composed of many difrent elements: walls, windows, roof, entry, ... , proportions, rhythm, emotions, impresions... The tool is: our knowledge, imagination, talent, experience, norms, law and drawing equipment. Working with the computer, making virtual model, we have many of mentioned elements given in structure of CAAD program and interpreted by it. But many of them have different character. Making traditional dummy of building we operate on reality which is manually accessible. In case of computer model we operate on information. Space, substance and tool (- program) are informations, data. Human being is not an abstract data processor, but creature that lives non stop in close, direct, sensual contact with nature. By this contact with enviroment collects experiences. Computer can operate on digital data that is optionally selected and given by user, independent upon enviromental conditions. Usually architecture was created on basis of enviroment, climate, gravity. But these do not exist in CAAD programs or exist in the symbolic form. Character of these conditions is not obvious. We can watch demeanour of objects in gravity but it can be also antigravity. In theory of systems everything is considered as a part of biger system. In "virtual" reality (in computer space) we deal with accurences which are reduced to abstract level, free upon terms or connections. We work with our CAAD software using geometric space whithout any other principle.

series eCAADe
last changed 2022/06/07 07:50

_id caadria2008_17_session2a_143
id caadria2008_17_session2a_143
authors Kaewlai, Pornpis; Pinyo Jinuntuya, Pizzanu Kanongchaiyos
year 2008
title Interactive Feasibility-based CAAD System for Infrastructure and Open Space Planning in Housing Project Design
doi https://doi.org/10.52842/conf.caadria.2008.143
source CAADRIA 2008 [Proceedings of the 13th International Conference on Computer Aided Architectural Design Research in Asia] Chiang Mai (Thailand) 9-12 April 2008, pp. 143-148
summary The decision support system developed in this research is aimed to the conceptual scheme of project focusing on infrastructure planning and open space design in the architectural context for housing project. Alternative design sets are provided within the limitations, and possibilities to be further evaluated appropriately. This system helps architects and developers to analyze relationships of physical environment, architectural requirements and the overall of project-related factors with real-time cost estimation. Factors for cost estimation derived from the beginning to the end of project will be manipulated simultaneously. Architects and developers can use this design simulation to address the physical data with real-time cost estimation, provide alternative results, and design evaluation for overall project’s feasibility. The software of our research is not just a tool for design & planning automation in feasibility analysis. It will be an interactive decision support system for both developers and planners aspects. The system was developed by SketchUp Ruby Application Programming Interface. The results will be presented into two ways. Firstly, 2D and 3D modeling will be used for interactive visualization in design and planning of the beginning process. Subsequently, numbers and additional factors in details will be used to show relationship between architectural environment and feasibility-based information to help architects and developers collaboratively analyze the land use planning and open space design for housing project. In evaluation process, the developed software is tested with the project preceding and the future project of Bangkok area under constraints and regulations of Building Control Act of Thailand. In conclusion, this system will make effectiveness in design process and management of the construction knowledge. The decision support systems should be designed to makes explicit use of both planning analysis aspect and knowledge-based decision making.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_346
id ecaadesigradi2019_346
authors Kaftan, Martin, Sautter, Sebastian and Kubicek, Bernhard
year 2019
title Integrating BIPV during Early Stages of Building Design
doi https://doi.org/10.52842/conf.ecaade.2019.2.139
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 139-144
summary In the quest to achieve the ambitious climate and clean energy targets the broad implementation of Integrated Photovoltaics (BIPV) is one of the keys. Photovoltaic (PV) modules can be installed above or on current roofing or traditional wall structures. In addition, BIPV devices substitute the skin of the exterior construction frame, i.e. the weather screen, thus simultaneously acting as both a climate screen and an energy producing source. However, while the integral planning strategy to building projects promotes the effective execution of BIPV, the limitation lies in the absence of both instruments and easy-to-use planning aid guidelines, particularly by non-PV experts in the early design stage. This study presents computational methods that help to quickly analyze the BIPV potential for a given building project and to suggest the optimal economical amount and location of the panels based on the building's energy demand profile.
keywords building integrated photovoltaic (BIPV); integral planning; design rules; simplified models; machine learning
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id 24f4
authors Kaga, A., Comair, C. and Sasada, T.
year 1997
title Collaborative Design System with Network Technologies
doi https://doi.org/10.52842/conf.caadria.1997.187
source CAADRIA ‘97 [Proceedings of the Second Conference on Computer Aided Architectural Design Research in Asia / ISBN 957-575-057-8] Taiwan 17-19 April 1997, pp. 187-196
summary During the past ten years at the Sasada Lab of Osaka University has been using computer graphics for presentation, design review and design for practical architectural design projects. Our laboratory is interested in "collaborative design” with designers, clients and citizen. We discovered that there are two major problems, initiatives and timing, and have found new solutions using network technologies. This method have solved these problems, but we have found major problems in "collaborative design” that occur the during many practical architectural design projects. This paper presents these problems and some of the solutions and research that our group has accomplished, or is pursuing in the field of "collaborative design”, using some of the latest technologies in hyper-medium and networking. This paper presents the requirements for Collaborative Design System, the new technologies and the thought of system architecture, the prototype system in practical design project, and the evaluation of prototype system.
series CAADRIA
email
last changed 2022/06/07 07:52

_id f01f
authors Kaga, A., Nakahama, K., Hamada, S., Yamaguchi, S. and Sasada, T.
year 2001
title Collaborative design system with hypermedium and networking
source Automation in Construction 10 (3) (2001) pp. 309-318
summary During the past 10 years, the Sasada Lab of Osaka University has been using computer graphics (CG) for presentation, design review, and design for practical architectural design projects. Our laboratory is interested in "collaborative design" with designers, clients, and citizen. We discovered that there are two major problems, initiatives and timing, and have found new solutions using network technologies. This method have solved these problems, but we have found major problems in "collaborative design" that occur during many practical architectural design projects. This paper presents these problems and some of the solutions and research that our group has accomplished, or is pursuing, in the field of "collaborative design" using some of the latest technologies in hypermedium and networking. This paper presents the requirements for collaborative design system, the new technologies and the thought of system architecture, the prototype system in practical design project, and the evaluation of prototype system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 399e
authors Kaga, A., Nakahama, K., Hamada, S., Yamaguchi, S., Yamanishi, H. and Sasada, T.
year 1999
title Collaborative Design System for Citizen Participation in Planning Public Road Projects
doi https://doi.org/10.52842/conf.caadria.1999.225
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 225-234
summary The realization of smooth execution of public street enterprise and good communication with inhabitants needs the way of easy and right explanation which the inhabitants understand the street planning, and the scheme of administration and inhabitants make the nice housing environment together. In this paper, the street planing presentation system for inhabitants established by using computer graphics. The applicability of the presentation system is made clear using in the real project.
series CAADRIA
last changed 2022/06/07 07:52

_id 0d08
authors Kaga, A., Nakahama, K., Yamaguchi, S., Jyozen, T., Oh, S. and> Sasada, T.
year 2000
title Collaborative Design System for Citizen Participation
doi https://doi.org/10.52842/conf.caadria.2000.035
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 35-44
summary Citizens are becoming increasingly aware of the issues involved in public utility projects. Therefore, it is becoming important for public works departments of local governments to obtain consent from the residents concerned. We established the collaborative design system for citizen participation with using computer graphics. With using the system we found that the related persons have some requirements about collaborative design system. It can be effectively done with network and multimedia technologies. This paper presents the requirements for new collaborative design system.
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 732HOMELOGIN (you are user _anon_646663 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002