CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 1573

_id ecaade2014_021
id ecaade2014_021
authors Aant van der Zee, Bauke de Vries and Theo Salet
year 2014
title From rapid prototyping to automated manufacturing
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-461
doi https://doi.org/10.52842/conf.ecaade.2014.1.455
wos WOS:000361384700045
summary In this paper we present an outline of a newly started project to develop a tool which connects BIM to a manufacturing technique like 3D printing. First we will look some promising manufacturing techniques. We will design a small dwelling and export it into a BIM, from which we will extract our data to generate the path the nozzle has to follow. The chosen path is constrained by the material properties, the design and speed of the nozzle. To validate the system we develop a small VR tool in which we mimic a manufacturing tool.
keywords Rapid prototyping; rapid manufacturing; robotics; automation; building information model (bim)
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2014_075
id sigradi2014_075
authors Afsari, Kereshmeh; Chuck Eastman
year 2014
title Categorization of building product models in BIM Content Library portals
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 370-374
summary BIM Content Libraries are performing as online sources for building product models. In order to effectively use the product models, it is important to organize them systematically within these databases. But currently there is no standard or guideline for this purpose. Products in these libraries are being categorized based on different criteria such as the object classes in the target platform, by referring to multiple classification systems or based on customized categories. This paper studies some of the BIM Content Libraries and investigates the structure that each library is using for product categorization. It indicates the need for a generic framework for the purpose of product categorization in BIM Content Libraries.
keywords BIM objects; Product models; Building models; BIM Content Library; Product category
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_145
id sigradi2014_145
authors Badella, María Laura; Estefanía Alicia Fantini
year 2014
title Los entornos virtuales de aprendizaje: un emergente de la democratización del conocimiento. El caso de la Asignatura Metodología de la Investigación de la LAV-FADU-UNL [Virtual learning environments: an emerging democratization of knowledge. The case of the Research Methodology Course of LAV-FADU-UNL]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 222-226
summary This work is part of research that the authors are performing as Master Thesis in Specific Teaching. While both investigations have different interests in the approach to the object of study is addressed, progress made so far inspire pose novel questions concerning the teaching of design and art.
keywords democratization of knowledge; Virtual Learning Environments; specific teaching; teaching art and design; distance learning
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_267
id sigradi2014_267
authors Braida Rodrigues de Paula, Frederico; Ashley Adelaide Rosa, Diogo Machado Homem, Izabela Ferreira Silva, Juliana Coelho, Fernando Tadeu de Araújo Lima, Juliane Figueiredo Fonseca, Vinicius Rocha Rodrigues Morais, Mariane da Paz Almeida
year 2014
title Do plano ao volume: a gramática dos planos em série como partido para a fabricação digital por meio de cortadoras a laser [From the plan to the volume: the grammar of plans in series as a party to digital fabrication through laser cutters]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 333-336
summary This article intent to promote discussion about the possibilities of using the plans in series reasoning as a party to digital fabrication. More specifically, this paper will address the possibilities of manufacturing objects using the logic of plans in series and laser cutting technology. To that end we assembled an identification of elements and transformations arising from the concepts of shape grammar, as well as an assessment of how to produce various objects in this sense
keywords Digital Fabrication; Laser Cutting; Plans in series; Shape Grammar
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2014_002
id ascaad2014_002
authors Burry, Mark
year 2014
title BIM and the Building Site: Assimilating digital fabrication within craft traditions
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 27-36
summary This paper outlines a particular component of very well known project: Antoni Gaudí’s Sagrada Família Basilica in Barcelona (1882– on-going but scheduled for completion in 2026). At the time of writing the realisation of the project has proceeded for 87 years since Gaudí's death (1852-1926). As a building site it has been a living laboratory for the nexus between traditional construction offsite manufacturing and digital fabrication since the computers were first introduced to the project:CAD in 1989 closely followed by CAAD two years later. More remarkably CAD/CAM commenced its significant influence in 1991 with the take-up of sem robotised stone cutting and carving. The subject of this paper is an elevated auditorium space that is one of the relatively few ‘sketchy’ areas that Gaudí bequeathed the successors for the design of his magnum opus.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_311
id acadia14_311
authors Crolla, Kristof; Williams, Nicholas
year 2014
title Smart Nodes: A System for Variable Structural Frames with 3D Metal-Printed Nodes
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 311-316
doi https://doi.org/10.52842/conf.acadia.2014.311
summary The SmartNodes research explores the potentials for highly-designed, customized connection nodes to be used in combination with standardized components in enabling a system of highly differentiated structures. This paper reports on the design workflow and research in progress towards the development of a prototype structure.
keywords 3D Metal Printing, Frame Structures, Embedded Intelligence, Digital Manufacturing, Mass-Customization, Digital Design Workflow, Works in Progress.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id sigradi2014_317
id sigradi2014_317
authors Folga, Alejando
year 2014
title Pseudoperspectivas / Realización de un Fotomontaje Diédrico [Pseudoperspectives / Making a Dihedral Photomontage]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 285-289
summary As the term suggests, a pseudoperspective involves performing a false perspective, and is the result of combining two different projective systems: Diedric Orthogonal System with the Central perspective System. Despite its heterodox character, this nifty graphic resource is used since the invention of perspective. With the digital graphics development of pseudo-perspectives currently allows new expressive possibilities. In this paper an academic exercise conducted with students from a curriculum during the first year of a career in architecture is presented. This work consisted of performing a photomontage from an elevation or vertical section.
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia14projects_153
id acadia14projects_153
authors Fornes, Marc; Kusama, Yayoi
year 2014
title Selfridges
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 153-156
doi https://doi.org/10.52842/conf.acadia.2014.153.2
summary The project follows an ongoing research method investigating the control and definition of compound curvature to generate structural forms. Furthermore, the forms are generated through conventional manufacturing processes, and thus, must be defined in the logic of industrial production. The form strives to simultaneously resolve issues of rigidity and performance within the limitations of industry.
keywords Generative Design, Digital fabrication and construction, Practice-based and interdisciplinary computational Design research, Material Logics and Tectonics, Material Agency, parametric and evolutionary Design
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id acadia14projects_223
id acadia14projects_223
authors Friedman, Jared; Kim, Heamin; Mesa, Olga
year 2014
title Woven Clay
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 223-226
doi https://doi.org/10.52842/conf.acadia.2014.223
summary The accompanying poster outlines the research behind a robotic clay deposition technique that weaves clay coils in order to build up a surface. The façade panels produced by the research team act as a proxy for potential applications of the fabrication technique.
keywords Robotics, Ceramics, Additive Manufacturing, 3D Printing, Weaving, Craft in a Digital Age
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:50

_id sigradi2014_063
id sigradi2014_063
authors Garcia, Alex; Smith Angelo, Elizabeth Romani, Juliana Harrison Henno, Milton Villegas Lemus
year 2014
title Resultados Sobre la Práctica del Diseño Asociado con el Trabajo Colaborativo y el Construccionismo en una Comunidad de Guarulhos, Brasil [Findings on the Design Practice Associated with the Collaborative Working and Constructionism in a Community of Guarulhos, Brazil]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 200-204
summary This article has a purpose to introduce a methodology to learn the product design principles, applied with the children of a neighborhood in the City of Guarulhos, State of São Paulo. This project is developed through a workshop organized with the collaboration of the Unified Educational Center, two companies and a digital inclusion program of the Municipality of Guarulhos. In order to provide an understanding on the development stages of a product from its design through its completion, the workshop allowed the participants to learn together and provided the access to a simplified design procedure.
keywords Design; Digital Manufacturing; Society; Technology Learning; Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:52

_id ijac201412405
id ijac201412405
authors Gómez Zamora, Paula and Matthew Swarts
year 2014
title Campus Information-and-knowledge Modeling: Embedding Multidisciplinary Knowledge into a Design Environment for University Campus Planning
source International Journal of Architectural Computing vol. 12 - no. 4, 439-458
summary This article gives an overview of our research approach in collecting specific information and multidisciplinary knowledge with the aim of integrating them into a model for the planning of a university, supported by a design environment. Our goal is to develop a strategy for modeling raw information and expert knowledge for the Georgia Tech Campus. This research was divided into three stages: First, we identified a variety of written sources of information for campus planning, extracting and distinguishing raw information from disciplinary knowledge. Second, we selected the elicitation methods to gather knowledge directly from experts, with the objective of performing qualitative assessments –effectiveness,efficiency,andsatisfaction–ofcertainfeaturesof the Georgia Tech Campus. Third, we interpreted the information and knowledge obtained and structured them into Bloom’s taxonomy of factual, conceptual, procedural and meta-cognitive, to define the specific modeling implementation strategies. Currently, we are implementing a Campus Landscape Information Modeling Tabletop in two phases. First, constructing an information-model based on raster and vector models that represent land types and landscape elements respectively, to perform quantitative assessments of campus possible scenarios. Second, embedding knowledge and qualitative aspects into a knowledge-model. The long-term goal is to include quantitative as well as qualitative aspects into a computational model, to support informed and balanced design decisions for university campus planning.This paper specifically focuses on the construction of the knowledge-model for Georgia Tech Landscape planning, its structure, its content, as well as the elicitation methods used to collect it.
series journal
last changed 2019/05/24 09:55

_id ascaad2014_028
id ascaad2014_028
authors Hamza, Neveen
year 2014
title Crafting the Virtual Sensory Environment: building performance simulation visualization as an enabler for creating sensory environments
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 353-359
summary The sensory virtual environment is defined as a cognitive method leading to a mental model of potential value in gaining insights of how building spaces may perform to enhance the sensory experience of occupants. For architects, creating a sensory and experiential space is the holy grail of design endeavours. So far, the results of the experiential and sensory success of buildings are dependent on the architects’ own experience and judgment of materials and compositions within the space. Currently the use of tools such as 3D Max provides an ocular experience of the crafted virtual space, rarely giving indications of daylight and possible sensory experiences of the indoor thermal and acoustic conditions. In practice testing the thermal, daylight and other environmental performances of buildings at design stage is within the remit of building services consultants for conformity regulatory checks, and is dominated by extensive 2D (graphs) information exchanges. There is a need to include other formats of visual information exchanges to facilitate decisions on sustainable buildings and to achieve performing sensory environments This paper presents an exploration of endeavours to test the virtual sensory space through visualizations of building performance and aims to provide recommendations on how to fuse endeavours to disseminate knowledge within the design team while creating an information exchange mechanism that captures experts’ explicit and tacit knowledge. Case studies will be presented on how building performance simulation tools are used to provide matrices of relations to indicate the building performance, thermal comfort, daylight and natural ventilation and were used as an aid for architectural design decisions to create sensory environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_157
id sigradi2014_157
authors Hemmerling, Marco; Ulrich Nether
year 2014
title Generico - A case study on performance-based design
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 126-129
summary The paper discusses a case study for a seating element that takes into account human factors as well as aspects of structural performance, material properties and production parameters within an integrative design approach. Generico is a prototype for a new way of design thinking, developed with a holistic approach. The design is based on the requirements of comfortable sitting and responds to load forces and ergonomic conditions. The Generico chair – resulting from an all-embracing line of thought, from design to production, is an ideal field of application for 3D-printing-technology as it allows for an optimal material distribution.
keywords Human-centered design; Performance-based design; Generative design; Structural analysis; Additive manufacturing
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2014_161
id caadria2014_161
authors Heydarian, Arsalan; Joao P. Carneiro,David Gerber, Burcin Becerik-Gerber, Timothy Hayes and Wendy Wood
year 2014
title Immersive Virtual Environments: Experiments on Impacting Design and Human Building Interaction
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 729–738
doi https://doi.org/10.52842/conf.caadria.2014.729
summary This research prefaces the need for engaging with endusers in early stages of design as means to achieve higher performing designs with an increased certainty for enduser satisfaction. While the architecture, engineering, and construction (AEC) community has previously used virtual reality, the primary use has been for coordination and visualization of Building Information Models (BIM). This work builds upon the value of use of virtual environments in AEC processes but asks the research question "how can we better test and measure design alternatives through the integration of immersive virtual reality into our digital and physical mock up workflows? " The work is predicated on the need for design exploration through associative parametric design models, as well as, testing and measuring design alternatives with human subjects. The paper focuses on immersive virtual environments (IVEs) and presents a literature review of the use of virtual environments for integrating enduser feedback during the design stage. In a controlled pilot experiment, the authors find that human participants perform similarly in IVE and the physical environment in everyday tasks. The participants indicated they felt a strong sense of "presence" in IVE. In the future, the authors plan on using IVE to explore the integration of multi agent systems to impact building design performance and occupant satisfaction.
keywords Virtual Reality; Prototyping; Design Technology; Immersive Virtual Environments; Feedback
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2014_237
id caadria2014_237
authors Imbern, Matias
year 2014
title (Re)Thinking the Brick: Digital Tectonic Masonry Systems
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 211–220
doi https://doi.org/10.52842/conf.caadria.2014.211
summary "The introduction of digital tools in the production of architecture undoubtedly constitutes the main force behind contemporary architectural innovation. In addition, the interaction of digital technologies with analog craft manufacturing -a rather unexplored field of study- suggests a wide range of novel opportunities. This research focuses on developing a framework for deploying digital design techniques to the production of bricks under vernacular technology as a medium of achieving geometrical variations and functional complexity in domestic-scale projects. Solid clay bricks are embedded in traditional ceramic-construction culture. Thus, this investigation faces the challenges of making a feasible innovative system in a country where digital fabrication is not an economically viable option, and engaging a design that can be easily implemented with current hand-labour. Consequently, the new bricks would be massively introduced in the construction market, allowing novel formal and functional possibilities for designers.
keywords Ceramics; brick; tectonic; digital tools; fabrication; vernacular technology
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_177
id caadria2014_177
authors Jonas, Katrin; Alan Penn and Paul Shepherd
year 2014
title Designing with Discrete Geometry
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 513–522
doi https://doi.org/10.52842/conf.caadria.2014.513
summary There has been a shift in aesthetics from the modern orthogonal building envelope to more elaborate curved and folded forms. Non_orthogonal forms are often associated with complete freedom of geometry, entrusting the advancement in custom manufacturing and robotic fabrication of one-off building parts to realise the design. This paper presents a methodology that allows non_orthogonal surfaces to be designed using a constrained library of discrete, tessellating parts. The method enables the designer both to produce ‘approximations’ of freeform designs in a top_down manner or to generate ‘candidate’ designs in a bottom_up process. It addresses the challenge in the field of design engineering to generate architectural surfaces which are complex, yet simple and economical to construct. The system relates to the notion that complexity derives from simple parts and simple rules of interaction. Here complexity relates to the holistic understanding of a structure as an interaction between its local parts, global form and visual, as well as functional performance.
keywords Geometry system; form generation; form growth; discrete growth model; design tool; complex geometry
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_225
id ecaade2014_225
authors Kostas Grigoriadis
year 2014
title Material Fusion - A research into the simulated blending of materials using particle systems
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 123-130
doi https://doi.org/10.52842/conf.ecaade.2014.2.123
wos WOS:000361385100012
summary Parallel to the early development and recent widespread usage of composite materials in building and manufacturing, the concept of functionally graded materials (FGM) was initiated and developed as far back as the 1980s. In contrast to the composite paradigm, where layers of materials are glued and 'cooked' together under high pressure and temperature to form laminated parts, FGM are singular materials that vary their consistency gradually over their volume. In direct link to their increasing use in fields adjacent to architecture, the scope of the paper is to explore a possible design route for designing with FGM. Of a limited number of available CAD software where material properties can be graded, the intent of the design for a materially graded windbreak module is to utilize particle systems as a technique for simulating fields of interacting, information-loaded material point sets that can be fused together in a gradient manner.
keywords Functionally graded materials; particle system elements
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2014_244
id caadria2014_244
authors Leblanc, François
year 2014
title Anything, Anyone, Anywhere
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 461–470
doi https://doi.org/10.52842/conf.caadria.2014.461
summary According to Hod Lipson at Cornell University’s Creative Machines Lab, cloud manufacturing ‘consists of a network of smallscale, decentralized nodes of production.’ It is a novel production approach relative to centralized mass production and standardisation methods common to today’s industrial processes. To date, cloud manufacturing techniques have focused largely on the production of smallscale consumer goods that integrate digital fabrication techniques, the most popular being 3D-printing technology. With advances in network-based design platforms for 3D-printing services in combination with the global installation of fabrication laboratories (fab lab), the production of architectural building components using cloud manufacturing techniques is now possible. This paper will define how cloud manufacturing techniques can be expanded into the realm of architectural practice and, in particular, how such techniques can be applied to larger-scale building and construction components. The paper will further discuss how such novel additive manufacturing (AM) processes applied to construction can potentially revolutionize architectural design by generating a new collaborative design model that facilitates local production of customized and readily assembled building components on demand.
keywords additive manufacturing; cloud manufacturing; peer-to-peer production; collaborative design; open-source design
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2014_244
id sigradi2014_244
authors Manica, Carlo Rossano; Fábio Gonçalves Teixeira, Underléa Miotto Bruscato, Leonardo Barili Brandi, Osorio Schaeffer, Renan Willian Leite Pereira
year 2014
title Processo de Fabricação Digital de Artefato para Transporte de Maças [Digital Process for Manufacturing Artifact for Apples Transport]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 324-327
summary This article presents the result of the activities carried out for the discipline of the program Master in Design and Technology (UFRGS), Digital Manufacturing Process as a Tool for Project. It aimed to develop a product based on digital manufacturing process. With this purpose, was designed a package for the transport of apples. In order to achieve the goal the generation of alternatives was conducted through a game and Sketch Creative Brainstorming, followed by research on the product life cycle. Subsequently, was used parametric modeling software for the package design. The use of three-dimensional modeling software Rhinoceros together with the plug-in Grasshopper allowed the construction of three-dimensional parametric models. As a result, we obtained the creation of a product that can be adapted to other fruits, avoiding rework, and run through rapid prototyping, this being a consequence of the facilities of adoption of digital fabrication.
keywords Digital fabrication; Parametric modeling; grasshoper; Packaging; Apple
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 78HOMELOGIN (you are user _anon_796106 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002