CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 784

_id sigradi2015_13.316
id sigradi2015_13.316
authors Ariza, Inés; Gazit, Merav
year 2015
title On-site Robotic Assembly of Double-curved Self-supporting Structures
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 746-753.
summary Robotic assembly of architectural structures has been an area of research for a few decades. Yet, current methods impose a large number of constraints on the geometry of those structures. In this paper we introduce a method for robotic assembly that enables the construction of double curved self-supporting structures. Latest research challenges have focused on the assembly of sophisticated brick structures and on sensor feedback systems for handling accuracy. We propose an alternative strategy to tackle tolerance handling in complex structures that rely on geometry. The intelligence of the system lies in two main aspects: a subdivision technique that incorporates the robot’s constraints as well as the structural equilibrium of the structure during each step of assembly, in order to omit the use of scaffolding; and a match between geometric information and the robot’s movements in a robot programming environment. As a proof of concept, we fabricated a portion of a full-scale double-curved structure. The structure was assembled without scaffolding by a portable KUKA KR10 on a randomly picked site. This project aims to demonstrate an easy and simple method for robotic assembly that enables the realization of digitally generated complex geometries as concrete complex structures.
keywords Robotic Assembly, Self-supporting Structure, On-site Assembly, Double Curvature, Construction Tolerances
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_279
id ecaade2015_279
authors Baquero, Pablo, Giannopoulou, Effimia and Cavazos, Jaime
year 2015
title Strategies for Metallic Vault Structures - Aluminium Composite Panels Used as Structural Elements
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 169-176
doi https://doi.org/10.52842/conf.ecaade.2015.2.169
wos WOS:000372316000021
summary This article explains parametric, fabrication and teaching strategies used during a workshop for constructing a full scale, self supporting, vault metal structure realized with parametric manufacturing methods. The key aim is to construct a small size, easy assembled and transportable pavilion, while focusing on new design and construction methods of a façade system in which the structure, joint and skin will integrate functions in a unifying structural system. For the investigation, we explore materials commonly used in façade industry, such as aluminum profiles and aluminium composite panels (ACP).
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2015_84
id ecaade2015_84
authors Kontovourkis, Odysseas and Tryfonos, George
year 2015
title Robotic Fabrication of Tensile Mesh Structures and Real Time Response - The Development and Simulation of a Custom-Made End Effector Tool
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 389-398
doi https://doi.org/10.52842/conf.ecaade.2015.2.389
wos WOS:000372316000045
summary This paper presents an ongoing research, aiming to introduce a fabrication procedure for the development of tensile mesh systems. The purpose of this methodology is to be implemented in real time, based on a feedback loop logic cyclically iterated between robotic machine control and elastic material behaviour. Our purpose is to extend the capacity of robotically driven mechanisms to the fabrication of complex tensile structures and at the same time, reduce the defects that might occur due to the deformation of the elastic material. In this paper, emphasis is given to the development of a custom-made end effector tool, which is responsible to add elastic threads and create connections in the form of nodes. Based on additive fabrication logic, this process suggests the real time development of physical prototypes through the increasing smoothness of mesh structures.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2021_251
id caadria2021_251
authors Ma, Chun Yu and van Ameijde, Jeroen
year 2021
title Participatory Housing: Discrete Design and Construction Systems for High-Rise Housing in Hong Kong
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 271-280
doi https://doi.org/10.52842/conf.caadria.2021.1.271
summary There has been a recent increase in the exploration of mereological systems, speculating on how digital design, assembly and reconfiguration of digital materials (Gershenfeld, 2015) enables digitally informed physical worlds that change over time. Besides opportunities for construction and design automation, there is a potential to reimagine how multiple stakeholders can participate in the computational decision-making process, using the benefits of the mass customization of logistics (Retsin, 2019). This paper presents a research-by-design project that applies a digital and discrete material system to high-rise housing in Hong Kong. The project has developed an integrated approach to design, construction, and inhabitation, using a system of discrete parts which can be assembled in various apartment configurations, to incorporate varying occupants requirements and facilitate negotiations and changes over time.
keywords Participatory Design; Generative Design; Adaptable Architecture; High-rise Housing
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2015_240
id ecaade2015_240
authors Sousa, Jose Pedro; Varela, Pedro Azambuja and Martins, Pedro Filipe
year 2015
title Between Manual and Robotic Approaches to Brick Construction in Architecture
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 361-370
doi https://doi.org/10.52842/conf.ecaade.2015.2.361
wos WOS:000372316000042
summary Brick construction has a long and rich structural and aesthetic traditions in architecture, which can be traced back to the origins of our civilization. However, despite the remarkable works of Frank Lloyd Wright, Louis Kahn, Eladio Dieste or Alvar Aalto in the 20th century, the application of this construction process to address more irregular geometries is very difficult to be achieved by conventional manual means. In this context, the last decade assisted to emergence of robotic applications in architecture. While Gramazio & Kohler looked for solving non-standard brick structures, others, like the S.A.M. robot initiative, are interested in improving the productivity in the fabrication of regular brick structures. By surveying the recent advances on bricklaying automation, this paper is interested in reflecting on the actual role of manual brickwork. In doing so, the authors present the Brick Tower experiment developed at the DFL/CEAU/FAUP, where two different fabrications processes are critically compared: a robotic and a manual one, which is aided by a video projection technique. By describing and illustrating this experiment, the authors argue that it is possible to expand the traditional craft of bricklaying by devising simple strategies to increase the human capacity to understand and materialize more elaborated geometries. This research avenue can be relevant if one considers that manual work should remain the most common form of brickwork practice in the next decades.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6bc50e2-6fe6-11e5-9a3c-4332809e7acb
last changed 2022/06/07 07:56

_id acadia15_297
id acadia15_297
authors Vasey, Lauren; Baharlou, Ehsan; Dörstelmann, Moritz; Koslowski; Marshall Prado, Valentin; Schieber, Gundula; Menges, Achim; Knippers, Jan
year 2015
title Behavioral Design and Adaptive Robotic Fabrication of a Fiber Composite Compression Shell with Pneumatic Formwork
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 297-309
doi https://doi.org/10.52842/conf.acadia.2015.297
summary This paper presents the production and development of an adaptive robotically fabricated ber composite compression shell with pneumatic formwork as a case study for investigating a generative behavioral design model and an adaptive, online mode of production. The project builds off of previous research at the University of Stuttgart on lightweight ber composite structures which attempts to reduce the necessary formwork for fabrication while simultaneously incorporating structural, material and fabrication logics into an integrative computational design tool. This paper discusses the design development and fabrication work ow of the project, as well a set of strategies which were developed for online robotic programming in response to live sensor data.
keywords Behavioral Fabrication, Behavioral Robotics, Agent Based Computation, Online Control, Biomimetics, Pneumatics, Signal Processing, Fibre Based Composites
series ACADIA
type normal paper
email
last changed 2022/06/07 07:58

_id ecaade2015_115
id ecaade2015_115
authors Weissenböck, Renate
year 2015
title Robotic Design-Fabrication - Exploring Robotic Fabrication as a Dynamic Design Process
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 309-318
doi https://doi.org/10.52842/conf.ecaade.2015.2.309
wos WOS:000372316000036
summary This research explores the relationship between digital design and digital fabrication, investigating robotic fabrication as a dynamic design process. It examines the potential of utilizing production tools as the key part of the design process, where the final geometry is neither simulated nor pre-defined in the digital realm before materialization. This “design-fabrication” or “design-by-fabrication” workflow fosters a new way of thinking about architectural design and practice, as well as unlocking creativity and discovering new geometries and aesthetics. To illustrate this, the paper presents a series of directed design experiments developed by students in two seminars at Graz University of Technology. A unique fabrication technique is investigated, combining laser cutting and robotic thermoforming, which was developed by the author in the course of her PhD-research. Utilizing this robotically aided design process, sheets of acrylic glass are laser cut and thermoformed by a robot into 3- dimensional spatial objects, each element with individual geometries, textures, transparencies and apertures.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=24c99f86-6fe5-11e5-915d-cb1b666445e6
last changed 2022/06/07 07:58

_id acadia20_202p
id acadia20_202p
authors Battaglia, Christopher A.; Verian, Kho; Miller, Martin F.
year 2020
title DE:Stress Pavilion
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 202-207
summary Print-Cast Concrete investigates concrete 3D printing utilizing robotically fabricated recyclable green sand molds for the fabrication of thin shell architecture. The presented process expedites the production of doubly curved concrete geometries by replacing traditional formwork casting or horizontal corbeling with spatial concrete arching by developing a three-dimensional extrusion path for deposition. Creating robust non-zero Gaussian curvature in concrete, this method increases fabrication speed for mass customized elements eliminating two-part mold casting by combining robotic 3D printing and extrusion casting. Through the casting component of this method, concrete 3D prints have greater resolution along the edge condition resulting in tighter assembly tolerances between multiple aggregated components. Print-Cast Concrete was developed to produce a full-scale architectural installation commissioned for Exhibit Columbus 2019. The concrete 3D printed compression shell spanned 12 meters in length, 5 meters in width, and 3 meters in height and consisted of 110 bespoke panels ranging in weight of 45 kg to 160 kg per panel. Geometrical constraints were determined by the bounding box of compressed sand mold blanks and tooling parameters of both CNC milling and concrete extrusion. Using this construction method, the project was able to be assembled and disassembled within the timeframe of the temporary outdoor exhibit, produce <1% of waste mortar material in fabrication, and utilize 60% less material to construct than cast-in-place construction. Using the sand mold to contain geometric edge conditions, the Print-Cast technique allows for precise aggregation tolerances. To increase the pavilions resistance to shear forces, interlocking nesting geometries are integrated into each edge condition of the panels with .785 radians of the undercut. Over extruding strategically during the printing process casts the undulating surface with accuracy. When nested together, the edge condition informs both the construction logic of the panel’s placement and orientation for the concrete panelized shell.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id caadria2022_245
id caadria2022_245
authors Chai, Hua, Guo, Zhixian, Wagner, Hans Jakob, Stark, Tim, Menges, Achim and Yuan, Philip F.
year 2022
title In-Situ Robotic Fabrication of Spatial Glulam Structures
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 41-50
doi https://doi.org/10.52842/conf.caadria.2022.2.041
summary While current approaches in timber construction stress the advantages of off-site prefabrication, glued laminated timber(glulam) structures is limited to the constraints of standardized, prefabricated mostly linear elements, which also lends itself only to building typologies that offer an increased level of standardization and regularity. The design freedom of timber structures is incomparable to that of reinforced concrete structures, which mostly gains from the in-situ fabrication process. An in-situ robotic timber fabrication platform allows the on-site construction of glulam structures with highly differentiated networks of beams composed of robotically assembled discrete linear elements. Based on the possibilities of such mobile robotic fabrication process, this paper explores novel architectural typologies of spatial glulam structures. The research is conducted from several aspects including joint tectonics, design method, and robotic fabrication process. A large-scale pavilion is designed and fabricated to verify the feasibility of the proposed system. This research could provide a novel mode of in-situ robotic timber fabrication and corresponding glulam structure system for timber construction.
keywords Mobile Robot, Timber Structure, In-situ Fabrication, Computational Design, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id acadia22_4
id acadia22_4
authors Gandia, Augusto; Gramazio, Fabio; Kohler, Matthias
year 2022
title Tolerance-Aware Design of Robotically Assembled Spatial Structures
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 4-23.
summary This paper presents a computational design method that integrates capabilities to manage material and fabrication tolerances occurring during the robotic assembly of spatial timber structures with tight-fit connections. This is achieved by building a data-base of tolerances measured during the robotic assembly process, which then allow for tolerance simulation as part of an assembly sequence planning method based on the Kruskal algorithm. Through a combination of optimization and linear regression techniques, the developed method enables designers to minimize deviations of their designs and diminish the risks of misfits during fabrication. In consequence, it allows for tolerance-aware designs.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id caadria2022_183
id caadria2022_183
authors Helmreich, Matthias, Mayer, Hannes, Pacher, Matteo, Nakajima, Tadahiro, Kuroki, Mitsuhiro, Tsubata, Shinya, Gramazio, Fabio and Kohler, Matthias
year 2022
title Robotic Assembly of Modular Multi-Storey Timber-Only Frame Structures Using Traditional Wood Joinery
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 111-120
doi https://doi.org/10.52842/conf.caadria.2022.2.111
summary This paper presents a novel approach to computationally designed and robotically assembled modular timber-only structures with traditional wood joinery methods. We geometrically adapt and parametrize five traditional joint typologies to compensate for robotic placement inaccuracies and comply with modern structural requirements. The force-locking capacity of the connections is utilised to support the robotic assembly of five unique timber frame modules of 5.5 by 2.2 by 2.5 metres, each with a unique timber lattice pattern. For each major joint typology we conduct a series of structural load-tests to evaluate the structural performance. We develop a custom software to enable architects and engineers to interactively design with those principles, taking into account both structural and production feasibility constraints. As a demonstration of our design approach, the five modules were robotically assembled using the described methods.
keywords Robotic Assembly, Wood Joints, Spatial Timber Structures, Timber-only, SDG 9, SDG 11, SDG 12
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2017_056
id ecaade2017_056
authors Kontovourkis, Odysseas
year 2017
title Multi-objective design optimization and robotic fabrication towards sustainable construction - The example of a timber structure in actual scale
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 337-346
doi https://doi.org/10.52842/conf.ecaade.2017.1.337
summary This paper attempts to reconsider the role of advanced tools and their effective implementation in the field of Architecture, Engineering and Construction (AEC) through the concept of sustainable construction. In parallel, the paper aims to discuss and find common ground for communication between industrial and experimental processes guided by sustainable criteria, an area of investigation that is currently in the forefront of the research work conducted in our robotic construction laboratory. Within this frame, an ongoing work into the design, analysis and automated construction of a timber structure in actual scale is exemplified and used as a pilot study for further discussion. Specifically, the structure consists of superimposed layers of timber elements that are robotically cut and assembled together, formulating the overall structural system. In order to achieve a robust, reliable and economically feasible solution and to control the automated construction process, a multi-objective design optimization process using evolutionary principles is applied. Our purpose is to investigate possibilities for sustainable construction considering minimization of cost and material waste, and in parallel, discussing issues related to the environmental impact and the feasibility of solutions to be realized in actual scale.
keywords Multi-objective optimization; robotic fabrication; cost and material waste minimization; sustainable construction; timber structure
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia18_358
id acadia18_358
authors Lara Ditzel, Patricio; Balas, Leonard; Kalina, Olga; Vasey, Lauren; Bechert, Simon; Krieg ,Oliver David; Menges, Achim; Knippers, Jan
year 2018
title Integrative Fabrication of Sandwich Shells. An integrative approach to design of robotically fabricated wood- based sandwich segmented shells
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 358-365
doi https://doi.org/10.52842/conf.acadia.2018.358
summary This paper presents the development of an integrative and adaptive robotic fabrication process for the production of wooden-based segmented shells of variable thickness. A material and construction process is presented whereby an industrial robot with a two-degree of freedom end-effector acts as active form-work, positioning flexible strips of plywood so they can be assembled into a structurally performative configuration and then filled with a polyurethane expandable foam. The resulting material system is a structurally performative and doubly curved sandwich composite which performs well in bending. This paper discusses the construction process and the material system, methods for structural analysis, an adaptive robotic fabrication process, as well as a computational design tool which integrates material constraints, robotic constraints, and structural performance. The resulting construction system expands the design possibilities for robotic fabrication in wood, particularly as a viable material system for implementation directly in an on-site condition.
keywords work in progress, fabrication & robotics, materials & adaptive systems
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id caadria2021_124
id caadria2021_124
authors Leung, Pok Yin Victor, Apolinarska, Aleksandra Anna, Tanadini, Davide, Gramazio, Fabio and Kohler, Matthias
year 2021
title Automatic Assembly of Jointed Timber Structure using Distributed Robotic Clamps
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 583-592
doi https://doi.org/10.52842/conf.caadria.2021.1.583
summary This paper presents a novel robotic assembly method for timber structures with integral timber joints, specifically, crossed-half-lap joints. The proposed method uses a set of custom-built, remote-controlled, high-force robotic clamps to operate in collaboration with an industrial robotic arm to overcome challenges of robotic timber joint assembly, such as providing large assembly forces and correcting misalignments. This method enables automatic assembly of non-repetitive and spatially connected timber structures. We developed custom software for modelling, visualization and feasibility-checking for structures compatible with the proposed assembly method. As a proof of concept, we designed and robotically assembled a spatial frame structure (4.8 x 3.0m footprint, 3.4m tall) comprising 40 pieces of 100x100mm profile timber elements.
keywords Robotic Assembly; Spatial Timber Structure; Wood Joints; Distributed Robots
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
doi https://doi.org/10.52842/conf.caadria.2014.159
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_176p
id acadia20_176p
authors Lok, Leslie; Zivkovic, Sasa
year 2020
title Ashen Cabin
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 176-181
summary Ashen Cabin, designed by HANNAH, is a small building 3D-printed from concrete and clothed in a robotically fabricated envelope made of irregular ash wood logs. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, forms of construction, and architectural design languages. Ashen Cabin challenges preconceived notions about material standards in wood. The cabin utilizes wood infested by the Emerald Ash Borer (EAB) for its envelope, which, unfortunately, is widely considered as ‘waste’. At present, the invasive EAB threatens to eradicate most of the 8.7 billion ash trees in North America (USDA, 2019). Due to their challenging geometries, most infested ash trees cannot be processed by regular sawmills and are therefore regarded as unsuitable for construction. Infested and dying ash trees form an enormous and untapped material resource for sustainable wood construction. By implementing high precision 3D scanning and robotic fabrication, the project upcycles Emerald-Ash-Borer-infested ‘waste wood’ into an abundantly available, affordable, and morbidly sustainable building material for the Anthropocene. Using a KUKA KR200/2 with a custom 5hp band saw end effector at the Cornell Robotic Construction Laboratory (RCL), the research team can saw irregular tree logs into naturally curved boards of various and varying thicknesses. The boards are arrayed into interlocking SIP façade panels, and by adjusting the thickness of the bandsaw cut, the robotically carved timber boards can be assembled as complex single curvature surfaces or double-curvature surfaces. The undulating wooden surfaces accentuate the building’s program and yet remain reminiscent of the natural log geometry which they are derived from. The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id cdrf2023_443
id cdrf2023_443
authors Myles B. Sampson III, Larry Sass
year 2023
title Interlocking Units for Robotically Fabricated Architectural Structures
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_37
summary Throughout this paper, we introduce a novel design-driven method for the robotic assembly of unit-based structures. The goal of this research is to establish a method to robotically fabricate discrete structures, using pick-and-place robotic manipulation and customized 3D-printed geometric units. Thus, the methodology allows for the bespoke discretization of architectural solid models into interlocking architectural units. Investigating how design can reduce error in the robotic fabrication process, a significant feature of this research is the application of mechanical coupling for the creation of self-interlocking geometry. This method is able to correct errors in robotic manipulation for the precise robotic fabrication of architectural structures. Reducing errors in the assembly process through the design of geometric units expands the field of architectural robotics to designers. Through a series of assembled architectures, fabricated through both additive and subtractive manufacturing techniques, the research explores the idea of an automated system producing unit-based structures using pick-in-place robotics and digitally fabricated units.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2023_22
id ecaade2023_22
authors Zhao, Jiangyang, Agkathidis, Asterios, Lombardi, Davide and Chen, Hanmei
year 2023
title A Computational Framework for Parametric Design and Robotic Fabrication of the Dougong joint
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 313–322
doi https://doi.org/10.52842/conf.ecaade.2023.1.313
summary The Dougong (brackets set) is a traditional Chinese capital used to transfer the load of the roof to a column. It is known for its anti-seismic properties, sustainability, and cultural significance. This paper introduces a framework for parametric design and robotic fabrication of the Dougong, thus it can be utilised in contemporary architecture. The framework incorporates topology optimisation, voxelisation, multi-objective optimisation and robotic assembly and is verified by designing and assembling a timber frame column out of Dougong units. Our findings highlight the potential of utilising the Dougong in contemporary design as well as a strategy to reduce the tolerances of robotically assembled tenon-mortise elements.
keywords Dougong, Timber Structures, Parametric Design, Robotic Assembly, Topology Optimization
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2015_324
id ecaade2015_324
authors Abdelmohsen, Sherif and Massoud, Passaint
year 2015
title Integrating Responsive and Kinetic Systems in the Design Studio: A Pedagogical Framework
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 71-80
doi https://doi.org/10.52842/conf.ecaade.2015.2.071
wos WOS:000372316000010
summary Responsive architecture is one of the growing areas of computational design that is not getting adequate attention in CAAD curricula. A pedagogical approach to designing responsive systems requires more than the typical knowledge, tools or skill sets in architectural design studios. This paper presents a framework for integrating responsive and kinetic systems in the architectural design studio. The framework builds on findings of two design studios conducted at The American University in Cairo, Egypt. In both studios, students were asked to design elements of responsive architecture that work towards the development of their projects. The paper demonstrates the process and outcomes of both studios. It then demonstrates how concepts of integrated project delivery are incorporated to propose a framework that engages students in designing, fabricating and operating responsive systems in different phases of the design process. A discussion follows regarding dynamics of design studio in light of the proposed framework.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7e59e026-6e8f-11e5-9e59-876225eebea0
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 39HOMELOGIN (you are user _anon_732287 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002