CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3789

_id ecaade2017_144
id ecaade2017_144
authors Lange, Christian J.
year 2017
title Elements | robotic interventions II
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 671-678
doi https://doi.org/10.52842/conf.ecaade.2017.1.671
summary Reviewing the current research trends in robotic fabrication around the world, the trajectory promises new opportunities for innovation in Architecture and the possible redefinition of the role of the Architect in the industry itself. New entrepreneurial, innovative start-ups are popping up everywhere challenging the traditional model of the architect. However, it also poses new questions and challenges in the education of the architect today. What are the appropriate pedagogical methods to instill enthusiasm for new technologies, materials, and craft? How do we avoid the pure application of pre-set tools, such as the use of the laser cutter has become, which in many schools around the world has caused problems rather than solving problems? How do we teach students to invent their tools especially in a society that doesn't have a strong background in the making? The primary focus of this paper is on how architectural CAAD/ CAM education through the use of robotic fabrication can enhance student's understanding, passion and knowledge of materiality, technology, and craftsmanship. The paper is based on the pedagogical set-up and method of an M. Arch I studio that was taught by the author in fall 2016 with the focus on robotic fabrication, materiality, traditional timber construction systems, tool design and digital and physical craftsmanship.
keywords CAAD Education, Digital Technology, Craftsmanship, Material Studies, Tool Design, Parametric Modeling, Robotic Fabrication
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_026
id ecaade2016_026
authors Agkathidis, Asterios
year 2016
title Implementing Biomorphic Design - Design Methods in Undergraduate Architectural Education
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 291-298
doi https://doi.org/10.52842/conf.ecaade.2016.1.291
wos WOS:000402063700033
summary In continuation to Generative Design Methods, this paper investigates the implementation of Biomorphic Design, supported by computational techniques in undergraduate, architectural studio education. After reviewing the main definitions of biomorphism, organicism and biomimicry synoptically, we will assess the application of a modified biomorphic method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of design outputs, student performance as well as moderators and external examiners reports initiate a constructive debate about accomplishments and failures of a design methodology which still remains alien to many undergraduate curricula.
keywords CAAD Education; Strategies, Shape Form and Geometry; Generative Design; Design Concepts
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_014
id ascaad2016_014
authors Ahmed, Zeeshan Y.; Freek P. Bos, Rob J.M. Wolfs and Theo A.M. Salet
year 2016
title Design Considerations Due to Scale Effects in 3D Concrete Printing
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 115-124
summary The effect of scale on different parameters of the 3D printing of concrete is explored through the design and fabrication of a 3D concrete printed pavilion. This study shows a significant gap exists between what can be generated through computer aided design (CAD) and subsequent computer aided manufacturing (generally based on CNC technology). In reality, the 3D concrete printing on the one hand poses manufacturing constraints (e.g. minimum curvature radii) due to material behaviour that is not included in current CAD/CAM software. On the other hand, the process also takes advantage of material behaviour and thus allows the creation of shapes and geometries that, too, can’t be modelled and predicted by CAD/CAM software. Particularly in the 3D printing of concrete, there is not a 1:1 relation between toolpath and printed product, as is the case with CNC milling. Material deposition is dependent on system pressure, robot speed, nozzle section, layer stacking, curvature and more – all of which are scale dependent. This paper will discuss the design and manufacturing decisions based on the effects of scale on the structural design, printed and layered geometry, robot kinematics, material behaviour, assembly joints and logistical problems. Finally, by analysing a case study pavilion, it will be explore how 3D concrete printing structures can be extended and multiplied across scales and functional domains ranging from structural to architectural elements, so that we can understand how to address questions of scale in their design.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ascaad2016_043
id ascaad2016_043
authors Alacam, Sema; Orkan. Z. Güzelci
year 2016
title Computational Interpretations of 2D Muqarnas Projections in 3D Form Finding
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 421-430
summary In the scope of this study, we developed an algorithm to generate new 3D geometry (interpretation) of a given or generated planar projection of a muqarnas in a digital 3D modelling software (Rhinoceros), its visual scripting environment (VSE) Grasshopper and also the Python programming language. Differing from traditional methods, asymmetrical form alternatives are examined. In other words, 2D projections of muqarnas were only used as an initial geometrical pattern for generative form finding explorations. This study can be considered an attempt to explore new relations, rules and vocabulary through algorithmic form finding experiments derived from 2D muqarnas projections.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ascaad2016_011
id ascaad2016_011
authors Alani, Mostafa W.
year 2016
title Morphological Code of Historical Geometric Patterns - The Digital Age of Islamic Architecture
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 85-94
summary This study intervenes in the long-standing paradigm that considers compositional analysis as the key to researching the Islamic Geometric Patterns (IGP). The research argues that the compositional analysis of the geometry is not solely sufficient to investigate the design characteristics of the IGP, and the better way of achieving this emerges through a consideration of the design formalism.
series ASCAAD
email
last changed 2017/05/25 13:13

_id sigradi2016_756
id sigradi2016_756
authors Assis, Jonas H. G. de; Andrade, Max L. V. de; Brochardt, Mikael M. de S. A.
year 2016
title Aplicaç?es de Realidade Aumentada no Canteiro de Obras []
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.662-667
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2016_829
id caadria2016_829
authors Austin, Matthew and Wajdy Qattan
year 2016
title I’m a visual thinker: rethinking algorithmic education for architectural design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 829-838
doi https://doi.org/10.52842/conf.caadria.2016.829
summary The representational and visual aspects of architectural de- sign education cause certain pedagogical stresses in student’s capaci- ties to learn how to code, and this paper will serve as a critique of the current state of algorithmic pedagogy in architectural education. The paper will suggest that algorithmic curriculum should not frame code as ‘a design tool’, but as something to be designed in its own right; the writing of the code is the ‘design brief’ itself and not something addi- tional to an architectural design brief. The paper will argue for an ar- chitecture-less educational environment that focuses on computational competencies such as logic, loops and lists along with building a strong analytical basis for students’ understanding of programming and digital geometries.
keywords Pedagogy; algorithmic; programming; education
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2020_043
id caadria2020_043
authors Bai, Nan, Nourian, Pirouz, Xie, Anping and Pereira Roders, Ana
year 2020
title Towards a Finer Heritage Management - Evaluating the Tourism Carrying Capacity using an Agent-Based Model
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 305-314
doi https://doi.org/10.52842/conf.caadria.2020.1.305
summary As one of the most important areas in the Palace Museum, Beijing, China, the Hall of Mental Cultivation had suffered from overcrowding of visitors before it was closed in 2016 for conservation. Preparing for the reopening in 2020, the Palace Museum decided to take the chance and initiate finer-grained tourism management in the Hall. This research intends to provide an audio-guided touring program by dynamically evaluating the Tourism Carrying Capacity (TCC) with the highlight spots in the Hall, to operate the touring program spatiotemporally. Framing an optimization problem for the touring program, an agent-based simulator, Thunderhead Pathfinder, originally developed for evacuation in the emergency, is utilized to verify the performance of the touring system. The simulation shows that the proposed touring program could precisely fit all the key requirements to improve the visitors' experience, to guarantee heritage safety, and to ensure more efficient management.
keywords Tourism Carrying Capacity; Agent-Based Simulation; Operations Research; Heritage Management
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2017_280
id ecaade2017_280
authors Baldissara, Matteo, Perna, Valerio, Saggio, Antonino and Stancato, Gabriele
year 2017
title Plug-In Design - Reactivating the Cities with responsive Micro-Architectures. The Reciprocal Experience
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 571-580
doi https://doi.org/10.52842/conf.ecaade.2017.2.571
summary Every city has under utilized spaces that create a series of serious negative effects. Waiting for major interventions, those spaces can be reactivated and revitalized with soft temporary projects: micro interventions that light up the attention, give new meaning and add a new reading to abandoned spaces. We can call this kind of operations "plug-in design", inheriting the term from computer architecture: interventions which aim to involve the citizens and activate the environment, engage multiple catalyst processes and civil actions. Plug-in design interventions are by all meanings experimental, they seek for interaction with the users, locally and globally. Information Technology - with its parametric and site-specific capabilities and interactive features - can be instrumental to create such designs and generate a new consciousness of the existing environment. With this paper we will illustrate how two low-budget interventions have re-activated a forgotten public space. Parametric design with a specific script allowing site-specific design, materials and structure optimization and a series of interactive features, will be presented through Reciprocal 1.0 and Reciprocal 2.0 projects which have been built in 2016 in Italy by the nITro group.
keywords reciprocal frame; parametric design; responsive technology; plug-in design; interactivity; re-activate
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2016_150
id ecaade2016_150
authors Barczik, Günter and Kruse, Rolf
year 2016
title Shifting Design Work from Production to Evaluation - An Evolutive Design Tool
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 109-115
doi https://doi.org/10.52842/conf.ecaade.2016.2.109
wos WOS:000402064400010
summary We are developing an evolutive design tool that seeks to facilitate a shift in the focus of the process of designing architecture: away from the production of design alternatives or options towards an evaluation of semi-automatically generated ones. We work towards outsourcing the production of design alternatives in a given design task to a CAD tool and thereby give human designers more time to evaluate and discuss those alternatives and guide the tool in the production of improved alternatives. The format of our work is an experimental student design and research project where architects and computer scientists collaborate. Though the project is in a very early stage, our aim is to ultimately shift the focus of human designers' involvement from production of design options to the evaluation of those, in order to give humans more time to think, discuss, find, analyze and include many different points of view and make it easier for them to be impartial in finding optimal solutions. We developed a design tool that uses interactive evolutionary algorithms to support exploration of design options.
keywords Genetic Algorithm; Evolutive Design Strategy; Interactive evolutionary computation
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2016_125
id caadria2016_125
authors Chen, I-Chih and June-Hao Hou
year 2016
title Design with bamboo bend: Bridging natural material and computational design
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 125-133
doi https://doi.org/10.52842/conf.caadria.2016.125
summary Bamboo is a high potential alternative solution for substi- tuting industrial material with its natural characteristics, economical and environmental aspects. However, one of the biggest challenges for natural materials to be used in computational designed is the control- lability due to its unevenness nature. The other gap is the lack of ma- terial parameters that might be bridged by analysing data acquired from conventional tests. This research studied the raw bamboo strip and its natural forming from bending, by using sampling points and curvature reconstruction. The parametric models of bamboo strips were then constructed to represent its material behaviours for form prediction, material selection, and simulation in parametric design. It also serves as an assistive method for material selection when crafting with bamboo bend.
keywords Bamboo; bending; material computation; digital crafting
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2016_583
id sigradi2016_583
authors Chiarella, Mauro; Martini, Sebastián; Giraldi, Sebastián; Góngora, Nicolás; Picco, Camila
year 2016
title Cultura Maker. Dispositivos, Prótesis Robóticas y Programación Visual en Arquitectura y Dise?o para eficiencia energética [Culture Maker. Devices, Prostheses Robotics and Visual Programming in Architecture and Design for energy efficiency.]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.961-968
summary The Maker movement is the ability to be small and at the same time world; craftsmanship and innovative; high technology and low cost. The Maker movement is doing for physical products what the open source made by the software. The Maker culture emphasizes collaborative learning and distributed cognition. Its knowledge base repository and channels of exchange of ideas and information are: web sites; social networks; the Hackerspaces and Fab-Labs. Three experiences presented with devices; prostheses robotics and CNC machines, based on logical replacement; adaptation and generation. Its authors are undergraduate and graduate fellows Industrial Design and Architecture.
keywords Maker culture; Prostheses Robotics; Visual Programming; Energy Efficiency; Adaptive Skin
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2016_027
id ascaad2016_027
authors Cocho-Bermejo, Ana
year 2016
title Time in Adaptable Architecture - Deployable emergency intelligent membrane
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 249-258
summary The term "Parametricism" widespread mainly by Patrick Schumacher (Schumacher, 2008) is worthy of study. Developing the concept of Human Oriented Parametric Architecture, the need of implementing time as the lost parameter in current adaptive design techniques will be discussed. Morphogenetic processes ideas will be discussed through the principle of an adaptable membrane as a case study. A model implementing a unique Arduino[i] on the façade will control its patterns performance through an Artificial Neural Network that will understand the kind of scenario the building is in, activating a Genetic Algorithm that will optimize the insulation performance of the ETFE pillows. The system will work with a global behavior for façade pattern performance and with a local one for each pillow, giving the option of individual sun-shading control. Machine learning implementation will give the façade the possibility to learn from the efficacy of its decisions through time, eliminating the need of a general on-off behavior.
series ASCAAD
email
last changed 2017/05/25 13:31

_id ecaadesigradi2019_561
id ecaadesigradi2019_561
authors Cress, Kevan and Beesley, Philip
year 2019
title Architectural Design in Open-Source Software - Developing MeasureIt-ARCH, an Open Source tool to create Dimensioned and Annotated Architectural drawings within the Blender 3D creation suite.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 621-630
doi https://doi.org/10.52842/conf.ecaade.2019.1.621
summary MeasureIt-ARCH is A GNU GPL licensed, dimension, annotation, and drawing tool for use in the open source software Blender. By providing free and open tools for the reading and editing of architectural drawings, MeasurIt-ARCH allows works of architecture to be shared, read, and modified by anyone. The digitization of architectural practice over the last 3 decades has brought with it a new set of inter-disciplinary discourses for the profession. An attempt to utilise 'Open-Source' methodologies, co-opted from the world of software development, in order to make high quality design more affordable, participatory and responsible has emerged. The most prominent of these discussions are embodied in Carlo Raitti and Mathew Claudel's manifesto 'Open-Source Architecture' (Ratti 2015) and affordable housing initiatives like the Wikihouse project (Parvin 2016). MeasurIt-ARCH aims to be the first step towards creating a completely Open-Source design pipeline, by augmenting Blender to a level where it can be used produce small scale architectural works without the need for any proprietary software, serving as an exploratory critique on the user experience and implementations of industry standard dimensioning tools that exist on the market today.
keywords Blender; Open-Source; Computer Aided Design ; OSArc
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaade2023_138
id ecaade2023_138
authors Crolla, Kristof and Wong, Nichol
year 2023
title Catenary Wooden Roof Structures: Precedent knowledge for future algorithmic design and construction optimisation
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 611–620
doi https://doi.org/10.52842/conf.ecaade.2023.1.611
summary The timber industry is expanding, including construction wood product applications such as glue-laminated wood products (R. Sikkema et al., 2023). To boost further utilisation of engineered wood products in architecture, further development and optimisation of related tectonic systems is required. Integration of digital design technologies in this endeavour presents opportunities for a more performative and spatially diverse architecture production, even in construction contexts typified by limited means and/or resources. This paper reports on historic precedent case study research that informs an ongoing larger study focussing on novel algorithmic methods for the design and production of lightweight, large-span, catenary glulam roof structures. Given their structural operation in full tension, catenary-based roof structures substantially reduce material needs when compared with those relying on straight beams (Wong and Crolla, 2019). Yet, the manufacture of their non-standard geometries typically requires costly bespoke hardware setups, having resulted in recent projects trending away from the more spatially engaging geometric experiments of the second half of the 20th century. The study hypothesis that the evolutionary design optimisation of this tectonic system has the potential to re-open and expand its practically available design solution space. This paper covers the review of a range of built projects employing catenary glulam roof system, starting from seminal historic precedents like the Festival Hall for the Swiss National Exhibition EXPO 1964 (A. Lozeron, Swiss, 1964) and the Wilkhahn Pavilions (Frei Otto, Germany, 1987), to contemporary examples, including the Grandview Heights Aquatic Centre (HCMA Architecture + Design, Canada, 2016). It analysis their structural concept, geometric and spatial complexity, fabrication and assembly protocols, applied construction detailing solutions, and more, with as aim to identify methods, tools, techniques, and construction details that can be taken forward in future research aimed at minimising construction complexity. Findings from this precedent study form the basis for the evolutionary-algorithmic design and construction method development that is part of the larger study. By expanding the tectonic system’s practically applicable architecture design solution space and facilitating architects’ access to a low-tech producible, spatially versatile, lightweight, eco-friendly, wooden roof structure typology, this study contributes to environmentally sustainable building.
keywords Precedent Studies, Light-weight architecture, Timber shell, Catenary, Algorithmic Optimisation, Glue-laminated timber
series eCAADe
email
last changed 2023/12/10 10:49

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
doi https://doi.org/10.52842/conf.acadia.2020.1.688
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2017_134
id ecaade2017_134
authors Del Signore, Marcella
year 2017
title pneuSENSE - Transcoding social ecologies
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 537-544
doi https://doi.org/10.52842/conf.ecaade.2017.2.537
summary Cities are continuously produced through entropic processes that mediate between complex networked systems and the immediacy urban life. Emergent media technologies inform new relationships between information and matter, code and space to redefine new urban ecosystems. Modes of perceiving, experiencing and inhabiting cities are radically changing along with a radical transformation of the tools that we use to design. Cities as complex and systemic organisms require approaches that engage new multi-scalar strategies to connect the physical layer with the system of networked ecologies. This paper aims at investigating emerging and novel forms of reading and producing urban spaces reimagining the physical city through intelligent and mediated processes. Through data agency and responsive urban processes, the design methodology explored the materialization of a temporary pneumatic structure and membrane that tested material performance through fabrication and sensing practices through the pneuSENSE project developed in July 2016 in New York at the Brooklyn Navy Yard during the 'HyperCities' IaaC- Institute for Advanced Architecture of Catalonia - Global Summer School.
keywords responsive urban processes; data agency ; reciprocity between micro (body) and macro (environment); dynamics of social ecologies; mapped-environment
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2018_1483
id sigradi2018_1483
authors Dias Maciel, Sérgio; de Amorim, Arivaldo Leão; de Souza Checcucci, Érica; Bomfim Santos, Kyane
year 2018
title The creative process in architectural design on a digital environment: an experience with beginner students
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1010-1016
summary This article presents some results in the architectural design course, which were obtained by under graduate students in two experimental class organized at Federal University of Bahia in 2016 and 2017 years. The class Studio I, with incoming students (2016) and Integrated Digital Studio, with beginners and sophomore students (2017), were planned to have their activities developed in a digital environment, using geometric modeling as the main resource for the architectural design. The results obtained show maturity and autonomy of the students related to architectural designing and the use of digital resources.
keywords Architectural design; Architectural design teaching; Geometric Modeling; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2017_046
id ecaade2017_046
authors Ezzat, Mohammed
year 2017
title Implementing the General Theory for Finding the Lightest Manmade Structures Using Voronoi and Delaunay
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 2, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 241-250
doi https://doi.org/10.52842/conf.ecaade.2017.2.241
summary In previous efforts, the foundation of a general theory that searches for finding lightest manmade structures using the Delaunay diagram or its dual the Voronoi diagram was set (Ezzat, 2016). That foundation rests on using a simple and computationally cheap Centroid method. The simple Centroid method is expected to play a crucial role in the more sophisticated general theory. The Centroid method was simply about classifying a cloud of points that represents specific load case/s stresses on any object. That classification keeps changing using mathematical functions until optimal structures are found. The point cloud then is classified into different smaller points' groups; each of these groups was represented by a single positional point that is related to the points' group mean. Those representational points were used to generate the Delaunay or Voronoi diagrams, which are tested structurally to prove or disprove the optimality of the classification. There was not a single optimized classification out of that process but rather a family of them. The point cloud was the input to the centroid structural optimization, and the family of the optimized centroid method is the input to our proposed implementation of the general theory (see Figure 1). The centroid method produced promising optimized structures that performed from five to ten times better than the other tested variations. The centroid method was implemented using the two structural plugins of Millipede and Karmaba, which run under the environment of the Grasshopper plugin. The optimization itself is done using the grasshopper's component of Galapagos.
keywords Agent-based structural optimization; Evolutionary conceptual tree representation; Heuristic structural knowledge acquisition ; Centroid structural classification optimization method
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2016_147
id caadria2016_147
authors Feist, S.; G. Barreto, B. Ferreira and A. Leita?o
year 2016
title Portable generative design for building information modelling
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2016.147
summary Generative Design (GD) is a valuable asset for architecture because it provides opportunities for innovation and improvement in the design process. Despite its availability for Computer-Aided De- sign (CAD), there are few applications of GD within the Building In- formation Modelling (BIM) paradigm, and those that exist suffer from portability issues. A portable program is one that will not only work in the application it was originally written for, but also in others with equivalent results. This paper proposes a solution that explores porta- ble GD in the context of BIM. We also propose a set of guidelines for a programming methodology for GD, adapted to the BIM paradigm. In the end, we evaluate our solution using a practical example.
keywords Building information modelling; generative design; porta- bility; programming
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 189HOMELOGIN (you are user _anon_177010 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002