CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 787

_id acadia16_54
id acadia16_54
authors Andreen, David; Jenning, Petra; Napp, Nils; Petersen, Kirstin
year 2016
title Emergent Structures Assembled by Large Swarms of Simple Robots
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 54-61
doi https://doi.org/10.52842/conf.acadia.2016.054
summary Traditional architecture relies on construction processes that require careful planning and strictly defined outcomes at every stage; yet in nature, millions of relatively simple social insects collectively build large complex nests without any global coordination or blueprint. Here, we present a testbed designed to explore how emergent structures can be assembled using swarms of active robots manipulating passive building blocks in two dimensions. The robot swarm is based on the toy “bristlebot”; a simple vibrating motor mounted on top of bristles to propel the body forward. Since shape largely determines the details of physical interactions, the robot behavior is altered by carefully designing its geometry instead of uploading a digital program. Through this mechanical programming, we plan to investigate how to tune emergent structural properties such as the size and temporal stability of assemblies. Alongside a physical testbed with 200 robots, this work involves comprehensive simulation and analysis tools. This simple, reliable platform will help provide better insight on how to coordinate large swarms of robots to construct functional structures.
keywords emergent structures, mechanical intelligence, swarm robotics
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id acadia16_164
id acadia16_164
authors Braumann, Johannes; Stumm, Sven; Brell-Cokcan, Sigrid
year 2016
title Towards New Robotic Design Tools: Using Collaborative Robots within the Creative Industry
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 164-173
doi https://doi.org/10.52842/conf.acadia.2016.164
summary This research documents our initial experiences of using a new type of collaborative, industrial robot in the area of architecture, design, and construction. The KUKA LBR-iiwa differs from common robotic configurations in that it uses seven axes with integrated force-torque sensors and can be programmed in the Java programming language. Its force-sensitivity makes it safe to interact with, but also enables entirely new applications that use hand-guiding and utilize the force-sensors to compensate for high tolerances on building sites, similar to how we manually approach assembly tasks. Especially for the creative industry, the Java programming opens up completely new applications that would have previously required complex bus systems or industrial data interfaces. We will present a series of realized projects that showcase some of the potential of this new type of collaborative, safe robot, and discuss the advantages and limitations of the robotic system.
keywords material tolerances, individualized production, iiwa, assembly, visual robot programming, collaborative robots
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id ecaade2016_162
id ecaade2016_162
authors Heinrich, Mary Katherine and Ayres, Phil
year 2016
title Using the Phase Space to Design Complexity - Design Methodology for Distributed Control of Architectural Robotic Elements
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 413-422
doi https://doi.org/10.52842/conf.ecaade.2016.1.413
wos WOS:000402063700046
summary Architecture that is responsive, adaptive, or interactive can contain active architectural elements or robotic sensor-actuator systems. The consideration of architectural robotic elements that utilize distributed control and distributed communication allows for self-organization, emergence, and evolution on site in real-time. The potential complexity of behaviors in such architectural robotic systems requires design methodology able to encompass a range of possible outcomes, rather than a single solution. We present an approach of adopting an aspect of complexity science and applying it to the realm of computational design in architecture, specifically by considering the phase space and related concepts. We consider the scale and predictability of certain design characteristics, and originate the concept of a formation space extension to the phase space, for design to deal directly with materializations left by robot swarms or elements, rather than robots' internal states. We detail a case study examination of design methodology using the formation space concept for assessment and decision-making in the design of active architectural artifacts.
keywords phase space; complexity; attractor; distributed control
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2016_197
id ecaade2016_197
authors Jovanovic, Marko, Stojakovic, Vesna, Tepavcevic, Bojan, Mitov, Dejan and Bajsanski, Ivana
year 2016
title Generating an Anamorphic Image on a Curved Surface Utilizing Robotic Fabrication Process
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 185-191
doi https://doi.org/10.52842/conf.ecaade.2016.1.185
wos WOS:000402063700021
summary The integration of industrial robots in the creative art industry has increased in recent years. Implementing both brick stacking robotic fabrication, following a curved wall, and generating an image viewed from a single point, by rotating the bricks around their centres, has yet to be studied. The goal of this research is to develop a functional, parametric working model and a workflow that ensure easy manipulation and control of the desired outcome via parameters. This paper shows a workflow for the automatic generation of anamorphic structures on a curved wall by utilizing modular brick-like elements. As a result, a code for the robot controller and the position of the structure during fabrication are provided.
keywords anamorphosis; brick lying; robotic fabrication; generative design
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2016_134
id ecaade2016_134
authors Kieferle, Joachim B. and Katodrytis, George
year 2016
title Fabricating Semi Predictable Surfaces - A workshop series on digitally fabricating freeform surfaces with aggregates
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 329-334
doi https://doi.org/10.52842/conf.ecaade.2016.1.329
wos WOS:000402063700037
summary Working with CNC routers and robots is widely used in architecture and fabrication. Our paper describes ways to use these tools more intuitively yet accurately and without a profound knowledge. We have developed a workshop format, in which even inexperienced participants are able to quickly start working with these tools by shaping the non-rigid material sand. Various production methods and tools are incorporated such as "manual", "gestural", "CNC" and "robotic" to create various 3D forms which are captured by methods like 3D scanning, vacuum forming or glueing.
keywords Education; Digital Fabrication; Sand surface; Formwork
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia16_382
id acadia16_382
authors Lopez, Deborah; Charbel, Hadin; Obuchi, Yusuke; Sato, Jun; Igarashi, Takeo; Takami, Yosuke; Kiuchi, Toshikatsu
year 2016
title Human Touch in Digital Fabrication
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 382-393
doi https://doi.org/10.52842/conf.acadia.2016.382
summary Human capabilities in architecture-scaled fabrication have the potential of being a driving force in both design and construction processes. However, while intuitive and flexible, humans are still often seen as being relatively slow, weak, and lacking the exacting precision necessary for structurally stable large-scale outputs—thus, hands-on involvement in on-site fabrication is typically kept at a minimum. Moreover, with increasingly advanced computational tools and robots in architectural contexts, the perfection and speed of production cannot be rivaled. Yet, these methods are generally non-engaging and do not necessarily require a skilled labor workforce, bringing to question the role of the craftsman in the digital age. This paper was developed with the focus of leveraging human adaptability and tendencies in the design and fabrication process, while using computational tools as a means of support. The presented setup consists of (i) a networked scanning and application of human movements and human on-site positioning, (ii) a lightweight and fast-drying extruded composite material, (iii) a handheld “smart” tool, and (iv) a structurally optimized generative form via an iterative feedback system. By redistributing the roles and interactions of humans and machines, the hybridized method makes use of the inherently intuitive yet imprecise qualities of humans, while maximizing the precision and optimization capabilities afforded by computational tools—thus incorporating what is traditionally seen as “human error” into a dynamically engaging and evolving design and fabrication process. The interdisciplinary approach was realized through the collaboration of structural engineering, architecture, and computer science laboratories.
keywords human computer interaction and design, craft in design, tool streams and tool building, cognate streams, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:59

_id ecaade2016_161
id ecaade2016_161
authors Nan, Cristina, Patterson, Charlie and Pedreschi, Remo
year 2016
title Digital Materialization: Additive and Robotical Manufacturing with Clay and Silicone
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 345-354
doi https://doi.org/10.52842/conf.ecaade.2016.1.345
wos WOS:000402063700039
summary Through the use of algorithmic design methods and an ever growing variety of digital fabrication tools the complexity of process in the architectural discipline seems to be increasing. As this statement might apply to a variety of different areas of computational design and process management, this perceived growing complexity does not have to be viewed as unnecessary complication of design processes, if palpable and justifiable benefits occur. This paper intends to analyse and investigate the potential arising from digital tools of fabrication, specifically robots and 3D printers, and from open source platforms on exploring and managing complexity while enabling both simplicity of process and simplicity of implementation through emerging open source cultures. Building on this assumptions, this paper explores the professional possibilities generated the implementation of robotics as part of the academic curriculum. The theoretical concept of Machinecraft will be introduced and showcased on two research project, both focussing on advanced digital tools, additive manufacturing and machine engineering. Please write your abstract here by clicking this paragraph.
keywords Additive Manufacturing; 3D Printing; Robotics; Digital Fabrication; Open Source; Architectural Education
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia16_214
id acadia16_214
authors Schwartz, Mathew
year 2016
title Use of a Low-Cost Humanoid for Tiling as a Study in On-Site Fabrication: Techniques and Methods
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 214-223
doi https://doi.org/10.52842/conf.acadia.2016.214
summary Since the time architecture and construction began embracing robotics, the pre-fab movement has grown rapidly. As the possibilities for new design and fabrication emerge from creativity and need, the application and use of new robotic technologies becomes vital. This movement has been largely focused on the deployment of industrial-type robots used in the (automobile) manufacturing industry for decades, as well as trying to apply these technologies into off-site building construction. Beyond the pre-fab (off-site) conditions, on-site fabrication offers a valuable next step to implement new construction methods and reduce human work-related injuries. The main challenge in introducing on-site robotic fabrication/construction is the difficulty in calibrating robot navigation (localization) in an unstructured and constantly changing environment. Additionally, advances in robotic technology, similar to the revolution of at-home 3D printing, shift the ownership of modes of production from large industrial entities to individuals, allowing for greater levels of design and construction customization. This paper demonstrates a low-cost humanoid robot as highly customizable technology for floor tiling. A novel end-effector design to pick up tiles was developed, along with a localization system that can be applied to a wide variety of robots.
keywords humanoid robot, digital fabricaiton, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id sigradi2016_484
id sigradi2016_484
authors Shahmiri, Fereshteh; Gentry, Russell
year 2016
title A Survey of Cable-Suspended Parallel Robots and their Applications in Architecture and Construction
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.914-920
summary Serial, aerial and solid-linked parallel robots are unable to handle large payloads in building-scale workspaces for on-site applications and are thus best suited for automated fabrication in plant settings. In contrast, Cable Suspended Parallel Robots or CSPRs are able to handle large loads and traverse great distances as required on building construction sites. This paper reviews the existing literature and practice to bridge the gap between our understanding of CSPRs and their applicability to building-scale tasks such as full-scale concrete printing and building façade installation. The research identifies key activities in CSPRs fabrication workflows. Using a comparative approach, the paper investigates five CSPR variants and assesses the performance characteristics. A simple kinematic model of each CSPR is developed and implemented as a Rhino/Grasshopper script to aid in the performance assessment of each system. The paper concludes with a ranking of CSPR systems and their likely applicability to full-scale implementation on a construction site.
keywords Cable Suspended Parallel Robots; CSPR; Automation; AEC
series SIGRADI
email
last changed 2021/03/28 19:59

_id acadia16_184
id acadia16_184
authors Vasey; Lauren; Long Nguyen; Tovi Grossman; Heather Kerrick; Danil Nagy; Evan Atherton; David Thomasson; Nick Cote; David Benjamin; George Fitzmaurice; Achim Menges
year 2016
title Collaborative Construction: Human and Robotic Collaboration Enabling the Fabrication and Assembly of a Filament-Wound Structure
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 184-195
doi https://doi.org/10.52842/conf.acadia.2016.184
summary In this paper, we describe an interdisciplinary project and live-exhibit that investigated whether untrained humans and robots could work together collaboratively towards the common goal of building a large-scale structure composed out of robotically fabricated modules using a filament winding process. We describe the fabrication system and exhibition setup, including a custom end effector and tension control mechanism, as well as a collaborative fabrication process in which instructions delivered via wearable devices enable the trade-off of production and assembly tasks between human and robot. We describe the necessary robotic developments that facilitated a live fabrication process, including a generic robot inverse kinematic solver engine for non-spherical wrist robots, and wireless network communication connecting hardware and software. In addition, we discuss computational strategies for the fiber syntax generation and robotic motion planning which mitigated constraints such as reachability, axis limitations, and collisions, and ensured predictable and therefore safe motion in a live exhibition setting. We discuss the larger implications of this project as a case study for handling deviations due to non-standardized materials or human error, as well as a means to reconsider the fundamental separation of human and robotic tasks in a production workflow. Most significantly, the project exemplifies a hybrid domain of human and robot collaboration in which coordination and communication between robots, people, and devices can enhance the integration of robotic processes and computational control into the characteristic processes of construction.
keywords machin vision, cyber-physical systems, internet of things, robotic fabrication, human robot collaboration, sensate systems
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id ijac201614101
id ijac201614101
authors Webb, Alexander
year 2016
title Accepting the robotic other: Why real dolls and spambots suggest a near-future shift in architecture’s architecture
source International Journal of Architectural Computing vol. 14 - no. 1, 6-15
summary With weak Artificial Intelligence in the pockets of the majority of American adults, a societal introduction of a strong Artificial Intelligence or sentience seems close. Although the “intelligence” of our phones’ intelligence can be laughably brittle, the learning capacity demonstrated by the Internet of Things suggests more robust intelligence is on the way, and some would say it has already arrived. Several private technology firms have asserted that a robust Artificial Intelligence already exists and thought leaders within computation are lining up to ensure that it is not evil. Regardless of the morality of Artificial Intelligence, if our charge as architects is to design occupiable space, then we need to consider post-anthropocentric ecologies as well as how to adapt our design strategies to reflect inclusion of other species. This article describes two linked lines of thought, a meditation on the pending societal inclusion of the robotic other and why that robotic sentience may arrive from an unexpected origin and can reshape how we conceive of architecture itself.
keywords Artificial Intelligence, Emergent Design, Robots, Digital Communication, Network Models
series journal
last changed 2016/06/13 08:34

_id caadria2016_569
id caadria2016_569
authors Williams, Nicholas and Dharman Gersch
year 2016
title Developing the Termite Plug-In: Abstracting operations to link 5-axis CNC routers with para-metric CAAD tools
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 569-578
doi https://doi.org/10.52842/conf.caadria.2016.569
summary Since the turn of the millennium, architects and designers have used greater access to Computer Aided Manufacturing (CAM) machines to explore links between design and fabrication. This trend is recently manifested in plug-ins for CAD software packages, which enable designers to program industrial robots and additive manufac- turing machines. However, amongst the array of contemporary tools, few connect CAD packages to commercial 5-axis routers and, as a re- sult, designers are forced to use complex CAM software to operate these machines with limited exploration of the interface with design. This paper reports on the development of a CAD plug-in for driving such routers and targeted at designers. It discusses key aspects in the conception of the software libraries for an alpha release of the tool, a plug-in for McNeel Grasshopper named Termite. Primary considera- tions for the development team include the areas and extent of flexi- bility offered in order to enable non-expert users of such machines to use them to in an effective and efficient manner. Key elements of the tools are discussed, including the definition of machining tools, the creation of generic toolpaths and the subsequent writing machine-code files. A set of example pieces are presented to demonstrate the pro- posed approach for flank-milling, patterning and connecting timber components at a furniture scale. These are compared to plug-ins for industrial robot with similar technical knowledge and experience amongst the target audience.
keywords Digital fabrication; parametric design; architectural proto-types; digital material
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia22pr_202
id acadia22pr_202
authors Johnson, Jason Kelly; Gattegno, Nataly
year 2022
title Orbital - Computational Garden Folly
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 202-207.
summary Orbital is a computational garden folly, exploring geometric and material exuberance, digital design and fabrication. It evokes not only organic forms found in nature, but also giant robots and futuristic space vehicles. The structure is composed of three coiled legs that spiral towards the sky. The exterior double-curved surfaces are defined by stainless steel origami skins, while the interior space is wrapped by a vortex of colorful tactile aluminum shingles. Orbital’s dynamic form evokes an era of rapid change and uncertainty, while also inspiring curiosity and playful interaction.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id lasg_whitepapers_2016_fulltext
id lasg_whitepapers_2016_fulltext
year 2016
title Living Architecture Systems Group White Papers 2016
source Living Architecture Systems Group White Papers 2016 [ISBN 978-1-988366-10-4 (EPUB)] Riverside Architectural Press 2016: Toronto, Canada
summary Living Architecture Systems Group "White Papers 2016" is a dossier produced for the occasion of the Living Architecture Systems Group launch event and symposium hosted on November 4 and 5 at the Sterling Road Studio in Toronto and the University of Waterloo School of Architecture at Cambridge. The "White Papers 2016" presents research contributions from the LASG partners, forming an overview of the partnership and highlighting oppportunities for future collaborations.
keywords design, dissipative methods, design methods, synthetic cognition, neuroscience, metabolism, STEAM, organicism, field work, responsive systems, space, visualizations, sensors, actuators, signal flows, art and technology, new media art, digital art, emerging technologies, citizen building, bioinspiration, performance, paradigms, artificial nature, virtual design, regenerative design, 4DSOUND, spatial sound, biomanufacturing, eskin, delueze, bees, robotics
last changed 2019/07/29 14:02

_id ecaade2016_210
id ecaade2016_210
authors Abdelmohsen, Sherif, Massoud, Passaint and Elshafei, Ahmed
year 2016
title Using Tensegrity and Folding to Generate Soft Responsive Architectural Skins
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 529-536
doi https://doi.org/10.52842/conf.ecaade.2016.1.529
wos WOS:000402063700058
summary This paper describes the process of designing a prototype for a soft responsive system for a kinetic building facade. The prototype uses lightweight materials and mechanisms to generate a building facade skin that is both soft (less dependent on hard mechanical systems) and responsive (dynamically and simultaneously adapting to spatial and environmental conditions). By combining concepts stemming from both tensegrity structures and folding mechanisms, we develop a prototype that changes dynamically to produce varying facade patterns and perforations based on sensor-network data and feedback. We use radiation sensors and shape memory alloys to control the prototype mechanism and allow for the required parametric adaptation. Based on the data from the radiation sensors, the lengths of the shape memory alloys are altered using electric wires and are parametrically linked to the input data. The transformation in the resulting overall surface is directly linked to the desired levels of daylighting and solar exposure. We conclude with directions for future research, including full scale testing, advanced simulation, and multi-objective optimization.
keywords Soft responsive systems; tensegrity; folding; kinetic facades
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2016_049
id ascaad2016_049
authors Abdelsabour, Inas; Heba Farouk
year 2016
title Impact of Using Structural Models on Form Finding - Incorporating Practical Structural Knowledge into Design Studio
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 483-492
summary Physical Models as an architectural design tool, had major effect on architecture learning process. In structural form finding, it helped in improving visual design thinking to track form creation processes during form finding design stage. The aim is to study the impact of using physical models for second year architecture students in design studios learning. By analyzing and comparing students’ performance and progress; to clarify the effect of using physical models as a tool for designing progression, followed by analytical study on the students' structural models, in order to investigate the influence of models on their design educational progress. Research achieved that there were three basic phases the students pass through during form finding process when used manual physical models that improve the students' design capability.
series ASCAAD
email
last changed 2017/05/25 13:33

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2016_537
id sigradi2016_537
authors Abreu, Sandro Canavezzi de; Vasconcelos, Guilherme Nunes de; Stralen, Mateus van
year 2016
title Meta-Lab: programação de um laboratório interativo [Metal-Lab: the programming of an interactive lab]
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp.769-775
summary Here we discuss the technological and theoretical issues that conform the restructuring proposal of the Computer Laboratory of Escola de Arquitetura e Urbanismo da UFMG, reconfiguring it in what we call “Meta-Lab”: a space composed of programmable modules that make up the so called Sistema Hidra(!), a system structured in three levels (sensory, processor and actuator level) which receives environmental information via sensors, processes these information and changes the environment using actuators. We will address in more detail the processing level, a fundamental layer for enabling the implementation of “interactive permanency” through continuous reprogramming of interactions in Meta-Lab.
keywords Interactivity; Combinatory; Interactive Architecture
series other
type normal paper
email
last changed 2017/06/21 14:52

_id caadria2016_777
id caadria2016_777
authors Aditra, Rakhmat F. and Andry Widyowijatnoko
year 2016
title Combination of mass customisation and conventional construction: A case study of geodesic bamboo dome
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 777-786
doi https://doi.org/10.52842/conf.caadria.2016.777
summary With the development of advance fabrication, several digi- tal fabrication approaches have been developed. These approaches en- able better form exploration than the conventional manufacturing pro- cess. But, the built examples mostly rely on advance machinery which was not familiar or available in developed country where construction workers are still abundant. Meanwhile, much knowledge gathers in the field practice. This research is aimed to explore an alternative con- struction workflow and method with the combination of mass custom- ization and conventional construction method and to propose the structure system that emphasized this alternative workflow and meth- od. Lattice structure was proposed. The conventional construction method was used in the struts production and mass customization method, laser cutting, and was used for connection production. The algorithmic process was used mainly for data mining, details design, and component production. The backtracking was needed to be pre- dicted and addressed previously. Considerations that will be needed to be tested by further example are on the transition from the digital pro- cess to the manual process. Next research could be for analysing the other engineering aspect for this prototype and suggesting other struc- tural system with more optimal combination of conventional construc- tion and mass customization.
keywords Mass customisation; algorithmic design; digital fabrication; geodesic dome; lattice structure
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2016_059
id ascaad2016_059
authors Admed, Mohammad H.K.
year 2016
title Towards Developing BIM Curriculum in Higher Education in Egypt
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 589-598
summary The paper surveys and discusses the current state of teaching BIM in departments of architecture in Egypt. It also connects it to the increasing professional market demand for technologically qualified architects. In specific, the paper explores the reasons behind the fact that the local BIM curriculum is lagging behind its international counterpart. It also explores the need to utilise BIM software capabilities. A further comparative survey is carried out between local case studies and international cases through identifying several stages of BIM implementation in both teaching and design. The advantages and disadvantages of the current method of teaching are explored in an effort to improve performance of BIM curriculum.
series ASCAAD
email
last changed 2017/05/25 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 39HOMELOGIN (you are user _anon_337174 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002