CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2402

_id caadria2017_131
id caadria2017_131
authors Abe, U-ichi, Hotta, Kensuke, Hotta, Akito, Takami, Yosuke, Ikeda, Hikaru and Ikeda, Yasushi
year 2017
title Digital Construction - Demonstration of Interactive Assembly Using Smart Discrete Papers with RFID and AR codes
doi https://doi.org/10.52842/conf.caadria.2017.075
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 75-84
summary This paper proposes and examines a new way of cooperation between human workers and machine intelligence in architectural scale construction. For the transfer of construction information between the physical and digital world, mature technologies such as Radio Frequency IDentifier (RFID), and emerging technologies like Augmented Reality (AR) are used in parallel to supplement each other. Dynamic data flow is implemented to synchronize digital and physical models by following the ID signatures of individual building parts. The contributions of this paper includes the demonstration of current technological limitations, and the proposal of a hybrid system between human and computer, which is tested in order to explore the possibilities of digitally enhanced construction methods.
keywords Digital Construction; Augmented Reality; Human-Machine interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_147
id caadria2017_147
authors Agirachman, Fauzan Alfi, Ozawa, Yo, Indraprastha, Aswin, Shinozaki, Michihiko, Sitompul, Irene Debora Meilisa, Nuraeni, Ruri, Chirstanti, Augustine Nathania, Putra, Andrew Cokro and Zefanya, Teresa
year 2017
title Reimagining Braga - Remodeling Bandung's Historical Colonial Streetscape in Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2017.023
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 23-32
summary This paper presents the experience of the first phase of remodeling existing historical and colonial district in Bandung, Indonesia, including existing building façade, streetscape and street furniture. Braga Street is chosen as study case because it is a well-known historical street in Bandung with art deco style buildings constructed during Dutch colonial era. By remodeling it, it could help stakeholders to evaluate existing Braga street condition, to test any modification of buildings along the street and to determine specific regulation for the street. In this case, we use Unity3D and Oculus Rift DK2 for remodeling current situation. We gathered feedback from respondents using a questionnaire given after they experienced the model in VR. Many lessons learned from modeling process and respondents' feedback: higher frame rate to make seamless VR experience by having all components on a low poly model and provide smoother movement to prevent visual discomfort. This paper's conclusion gives suggestions for anyone who want to start architecture modeling in virtual reality for the very first time and how to optimize it.
keywords Virtual reality; historical building; digital reconstruction; streetscape
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_035
id caadria2017_035
authors Al-Qattan, Emad, Yan, Wei and Galanter, Philip
year 2017
title Establishing Parametric Relationships for Design Objects Through Tangible Interaction
doi https://doi.org/10.52842/conf.caadria.2017.147
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 147-156
summary This paper presents a method for translating physical interaction with design objects into parametric relationships. A framework of the method is created to automate the generation of parametric equations as modeling constraints. The prototypes developed for this work link digital models with their physical counterparts to create a hybrid and tangible interface that enables user interaction. The prototypes investigate linear and non-linear types of object relationships for creating parametric models. The results demonstrate a novel approach in architectural design that assists users in creating complex geometric relationships through intuitive interaction.
keywords Physical Computing; Parametric Design; Building Information Modeling; Tangible Interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_115
id caadria2017_115
authors Araullo, Rebekah and Haeusler, M. Hank
year 2017
title Asymmetrical Double-Notch Connection System in Planar Reciprocal Frame Structures
doi https://doi.org/10.52842/conf.caadria.2017.539
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 539-548
summary Reciprocal Frame Structures (RF) have broad application potentials. Flexible to using small available materials, they span large areas, including varied curvature and doubly-curved forms. Although not many buildings using RF have been constructed to date, records indicate RF efficiencies where timber was widely used in structures predating modern construction. For reasons of adaptability and economy, advances in computation and fabrication precipitated increase in research into RF structures as a contemporary architectural typology. One can observe that linear timber such as rods and bars feature in extensive RF research. However, interest in planar RF has only recently emerged in research. Hence one can argue that planar RF provides depth to explore new design possibilities. This paper contributes to the growing knowledge of planar RF by presenting a design project that demonstrates an approach in notching systems to explore design and structural performance. The design project, the developed design workflow, fabrication, assembly and evaluation are discussed in this paper.
keywords Reciprocal Frame Structures; Space Frames; Computational Design; Digital Fabrication; Deployable Architecture
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_110
id acadia17_110
authors Arnowitz, Ethan; Morse, Christopher; Greenberg, Donald P.
year 2017
title vSpline: Physical Design and the Perception of Scale in Virtual Reality
doi https://doi.org/10.52842/conf.acadia.2017.110
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 110-117
summary Virtual reality provides a heightened sense of immersion and spatial awareness that provides a unique opportunity for designers to perceive and evaluate scale and space. At the same time, traditional sketches and small-size physical models provide tactile feedback that allow designers to create, comprehend, and explore complex geometric relationships. Through the development of vSpline, a modeling application for virtual reality, we explore the potential for design within a virtual spatial environment to blur the boundaries between digital and physical stages of design, and seek to combine the best of both virtual and analog worlds. By using spline-based closed meshes created directly in three-dimensional space, our software provides the capabilities to design, modify, and save the information in the virtual world and seamlessly convert the data to evaluate the printing of 3D physical models. We identify and discuss important questions that arise regarding relationships of perception of scale, digital-to-physical domains, and new methods of input and manipulation within a 3D immersive space.
keywords design methods; information processing; hci; vr; ar; mixed reality; digital craft; manual craft
series ACADIA
email
last changed 2022/06/07 07:54

_id cf2017_474
id cf2017_474
authors Arora, Mallika; Pineda, Sergio; Williams, P. Andrew; Harris, Kenneth D. M.; Kariuki, Benson M.
year 2017
title Polymorphic Adaptation
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, pp. 474-491.
summary Polymorphism, the ability of a substance to exist as multiple, different, crystalline solids is a subject of much interest in the fields of chemistry, pharmacy and crystallography. In some cases, polymorphs can be found to interconvert, usually in response to changes in the physical environment such as changes in temperature or pressure. The ability of structures composed of identical building blocks to interconvert is relevant to the field of architecture where architectural artefacts may require to respond to transient demands. Here we describe the phenomenon of polymorphism and the relevance to the architectural field, together with the development of a bespoke software plugin to allow polymorphic crystal structures to be used in design.
keywords Collaborative Design Research, Polymorphism, Digital Form Studies
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_182
id caadria2017_182
authors Austin, Matthew
year 2017
title The Other Digital - What is the Glitch in Architecture?
doi https://doi.org/10.52842/conf.caadria.2017.551
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 551-559
summary This paper will discuss and investigate the issues with the concept of 'glitch' in architecture. There are currently two definitions that sit in a symbiotic relationship with each other; Moradi's (2004) and Menkman's (2011). This paper will explore the implications of these two approaches, while investigating the possibility of a third, unique definition (the encoded transform), and what effect they have on the possibility for a 'glitch architecture'. The paper will then focus on the glitches' capacity to be disruptive within the design process. In the context of architecture, it has been previously argued that the inclusion of glitches within a design process can easily create a process that does not 'converge' to a desired design outcome, but instead shifts haphazardly within a set of family resemblances (Austin & Perin 2015). Further to this, it will be revealed that this 'divergent' quality of glitches is due to the encoded nature of architectural production.
keywords Glitch aesthetics; Theory; Algorithmic Design; Process.
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2017_413
id cf2017_413
authors Aydin, Serdar; Schnabel, Marc Aurel; Sayah, Iman
year 2017
title Association Rule Mining to Assess User-generated Content in Digital Heritage: Participatory Content Making in ‘The Museum of Gamers’
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 413.
summary Association rule mining is one of several approaches in game design for discovering correlations among user-generated content items. This paper aims to aid the digital heritage field by analysing user preferences in interactive environments designed for participatory cultural heritage making. Textual and diagrammatic explication of the feedback mechanism introduces the universalization of the knowledge gained in this research that is supported with the outcome of a workshop which offered two gamified interactive environments. Three key pleasures of cyberspace in digital heritage are extended from immersion to meaningful experience and to transformation. User-generated content engenders meaningful correlations that help improve and evaluate digital heritage applications. Qualitative findings explicate the relationship of ‘The Museum of Gamers’ with the authenticity issue. This paper is among the first to investigate the association rule finding methods in relation to indexical authenticity in digital heritage.
keywords Digital heritage, Game analytics, Association rule mining, User-generated content, The Museum of Gamers
series CAAD Futures
email
last changed 2017/12/01 14:38

_id ecaade2017_099
id ecaade2017_099
authors Bialkowski, Sebastian
year 2017
title tOpos - GPGPU Accelerated Structural Optimisation Utility for Architects
doi https://doi.org/10.52842/conf.ecaade.2017.1.679
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 679-688
summary The paper focuses on possibilities of already known engineering procedures such as Finite Element Method or Topology Optimisation for effective implementation in architectural design process. The existing attempts of complex engineering algorithms implementation, as a form finding approach will be discussed. By intersecting architectural form evaluation with engineering analysis complemented by optimisation algorithms, the new quality of contemporary architecture design process may appears.
keywords topology optimisation; design support tools; complex geometries; General Programming GPU
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2017_057
id caadria2017_057
authors Buš, Peter, Treyer, Lukas and Schmitt, Gerhard
year 2017
title Urban Autopoiesis - Towards Adaptive Future Cities
doi https://doi.org/10.52842/conf.caadria.2017.695
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 695-704
summary A city, defined as a unity of inhabitants with their environment and showing self-creating and self-maintaining properties, can be considered as an autopoietic system if we take into account its bottom-up processes with unpredictable behaviour of its components. Such a property can lead to self-creation of urban patterns. These processes are studied in well-known vernacular architectures and informal settlements around the world and they are able to adapt according to various conditions and forces. The main research objective is to establish a computational design-modelling framework for modelling autopoietic intricate characteristics of a city based on an adaptability, self-maintenance and self-generation of urban patterns with adequate visual representation.The paper introduces a modelling methodology that allows to combine planning tasks with inhabitants' interaction and data sources by using an interchange framework to model more complex urban dynamics. The research yields preliminary results tested in a simulation model of a redevelopment of Tanjong Pagar Waterfront, the container terminal in the city of Singapore being transformed into a new future centre as a conducted case study.
keywords Urban Metabolism; Urban Autopoiesis; Computational Interchange; Emergent Urban Strategies; Adaptive City
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_055
id caadria2017_055
authors Caetano, In?s and Leit?o, António
year 2017
title Integration of an Algorithmic BIM Approach in a Traditional Architecture Studio
doi https://doi.org/10.52842/conf.caadria.2017.633
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 633-642
summary Algorithmic BIM combines BIM and Generative Design (GD), merging the potentialities of both approaches. In this paper we describe the design process of a set of parametric facades developed using Algorithmic-BIM, and how this approach was integrated into the design workflow of two architectural studios. We demonstrate how the integration of GD together with BIM influenced the whole design process and also the selection of the final solution. Some of the limitations found during the entire process are also addressed in the paper, such as tight deadlines and financial constraints. Finally, we explain the pros and cons of using this design method compared to a traditional BIM approach, and we discuss the implementation of this paradigm in a traditional design practice. This work was developed using Rosetta, an IDE for Generative Design that supports scripts using different programming languages and allows the generation and edition of 3D models in a variety of CAD and BIM applications. The result of this work is an information model of three parametric facades for a residential building, from which we can extract material quantities and construction performance tests.
keywords Generative design; collaborative design; CAD-BIM portability; parametric facade design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_056
id caadria2017_056
authors Carreiro, Miguel, Andrade, Marina A. P. and Sales Dias, Miguel
year 2017
title Cognition and Evaluation of Architecture Environments Based on Geometric Contour References and Aesthetic Judgements
doi https://doi.org/10.52842/conf.caadria.2017.581
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 581-590
summary This paper presents the outline and the achieved results of an experimental study developed to understand the differences on how close architecture spaces with distinct geometric characteristics at contour level, including rounded, curvilinear and sharp, rectilinear elements, are perceived and evaluated. In order to do so, eighteen virtual reality architecture spaces were evaluated by thirty-two test-subjects according to like/dislike aesthetic judgments. As expected, the tested subjects showed a higher level of preference for spaces with rounded, curvilinear contour elements. On another way, when the level of space curvature was high, considering the whole space surface and not only the contour of plan transitions, the level of preference decreased significantly. These results support the idea that rounded, curvilinear elements are interpreted as being more pleasant and preferred than sharp, rectilinear ones and create new knowledge on the how the levels of such preference are more accurate for moderate rather than radical curvature rates.
keywords Geometric contour; Architecture space environment; Curve, rounded, angular and rectilinear; aesthetic judgement; experimental study.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2017_070
id caadria2017_070
authors Chen, Nai Chun, Xie, Jenny, Tinn, Phil, Alonso, Luis, Nagakura, Takehiko and Larson, Kent
year 2017
title Data Mining Tourism Patterns - Call Detail Records as Complementary Tools for Urban Decision Making
doi https://doi.org/10.52842/conf.caadria.2017.685
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 685-694
summary In this study we show how Call Detail Record (CDR) can be used to better understand the travel patterns of visitors. We show how Origin-Destination (OD) Interactive Maps can provide transportation information through CDR. We then use aggregation of CDR to show the differences between the travel patterns of visitors from different countries and of different lengths of stay. We also show that visitors move differently during event periods and non-event periods, reflecting the importance of real-time data available by CDR. From CDR, we can gain more detailed and complete information about how tourists move compared to traditional surveys, which can be used to aid smarter transportation systems and urban resource planning.
keywords Machine Learning; Call Detail Record; Original-Destination Matrix; Urban Design Tool
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2017_122
id caadria2017_122
authors Chen, Zi-Ru and Liang, Kai-Hsiang
year 2017
title Application of Digital Fabrication Techniques to Reconstruct Ancient Machinery - A Case-study of Su Song's Water-powered Astronomical Clock Tower
doi https://doi.org/10.52842/conf.caadria.2017.777
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 777-786
summary The restoration of ancient machinery involves a number of aspects, including manufacturing procedure, materials, and scales. Portions that cannot be confirmed should be regarded as variable parameters of the reconstructed design, and therefore, there is no single result. The goal of reconstruction is to establish a prototype of ancient machinery with its mechanical engineering techniques and crafts. The problem of this study is how digital fabrication tools used in architectural design can be applied to the reconstruction of ancient machinery with the water-powered armillary and celestial tower as an example. The objective was to synthesize results that comply with historical records in a systematic, modularized, and parameterized manner and consider the feasibility of using modern digital fabrication and materials. With the procedure, we can reduce the difficulty of ancient machinery reconstruction and provide a reference for the reconstruction designs of ancient mechanical technology and crafts, and mass production made of different materials and scales in the future.
keywords Digital fabrication; Ancient mechanisms recovery; Innovative design
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2017_155
id caadria2017_155
authors Cichocka, Judyta Maria, Browne, Will Neil and Rodriguez, Edgar
year 2017
title Optimization in the Architectural Practice - An International Survey
doi https://doi.org/10.52842/conf.caadria.2017.387
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 387-396
summary For several years great effort has been devoted to the study of Architectural Design Optimization (ADO). However, although in the recent years ADO has attracted much attention from academia, optimization methods and tools have had a limited influence on the architectural profession. The aim of the study is to reveal users' expectations from the optimization tools and define limitations preventing wide-spread adaptation of the optimization solvers in the architectural practice. The paper presents the results of the survey "Optimization in the architectural practice" conducted between December 2015 and February 2016 on 165 architectural trainees and practising architects from 34 countries. The results show that there is a need for an interactive multi-objective optimization tool, as 78% respondents declared that a multi-objective optimization is more necessary in their practice than a single objective one and 91% of them acknowledged the need for choice of promising solutions during optimization process. Finally, it has been found that daylight, structure and geometry are three top factors which architects are interested in optimizing.
keywords Architectural Design Optimization; Optimizaiton Techniques; Generic Solvers; Multi-criteria Decision Making
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2017_667
id cf2017_667
authors Cichocka, Judyta; Migalska, Agata; Browne, Will N.; Rodriguez, Edgar
year 2017
title SILVEREYE– the implementation of Particle Swarm Optimization algorithm in a design optimization tool
source Gülen Çagdas, Mine Özkar, Leman F. Gül and Ethem Gürer (Eds.) Future Trajectories of Computation in Design [17th International Conference, CAAD Futures 2017, Proceedings / ISBN 978-975-561-482-3] Istanbul, Turkey, July 12-14, 2017, p. 667.
summary Engineers and architects are now turning to use computational aids in order to analyze and solve complex design problems. Most of these problems can be handled by techniques that exploit Evolutionary Computation (EC). However existing EC techniques are slow [8] and hard to understand, thus disengaging the user. Swarm Intelligence (SI) relies on social interaction, of which humans have a natural understanding, as opposed to the more abstract concept of evolutionary change. The main aim of this research is to introduce a new solver Silvereye, which implements Particle Swarm Optimization (PSO) in the Grasshopper framework, as the algorithm is hypothesized to be fast and intuitive. The second objective is to test if SI is able to solve complex design problems faster than ECbased solvers. Experimental results on a complex, single-objective high-dimensional benchmark problem of roof geometry optimization provide statistically significant evidence of computational inexpensiveness of the introduced tool.
keywords Architectural Design Optimization (ADO), Particle Swarm Optimization (PSO), Swarm Intelligence (SI), Evolutionary Computation (EC), Structural Optimization
series CAAD Futures
email
last changed 2017/12/01 14:38

_id caadria2017_043
id caadria2017_043
authors Coorey, Anycie, Haeusler, M. Hank and Coorey, Ben
year 2017
title Predictive Urban Analytics - Exploring Choice Modelling and Revealed Preferences for Urban Design
doi https://doi.org/10.52842/conf.caadria.2017.209
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 209-218
summary Since the rise of generative design, a morphogenetic process of designing has emerged where algorithms are used to explore potential permutations of a solution to find the best design option. Yet, on a subjective level, identifying what option is considered best has often proven to be difficult. Hence, the paper discusses a foundation research to investigate prototypically subjective judgments concern matters of value and preference defined by end users in generative modelled urban design outcome. To do so the paper will introduce and outline research findings in the field of Micro-Economics, in particular its subcategories 'Choice Modelling' as a method and 'Revealed Preferences' as a methodology to assess whether user preferences can be identified and engaged as 'preferred' design options. In the paper the research will outline in greater depth the theories behind Choice Modelling and Revealed Preferences, a field that studies the behaviour of individuals, and its relevance for urban design, in particular Computational Urbanism. The paper discusses how Choice Modelling can analyse design outcomes and conclude and speculate about its use in an applied context.
keywords Generative design; Aesthetic judgment; Choice modelling; revealed preference; design evaluation.
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_042
id caadria2017_042
authors Coorey, Ben and Coorey, Anycie
year 2017
title Generating Urban Form
doi https://doi.org/10.52842/conf.caadria.2017.261
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 261-269
summary Modern design of urban forms is venturing towards performative, site-specific architecture that are formed according to the attributes of its urban context. Parametric modelling techniques offer designers the ability to embed generative mechanisms into the design process to allow performance based design. This paper focuses on the development of a synthesis model that generates an Urban Form schema using computational design principles. The design system illustrates a rule-based systematic approach to urban form generation and is a precursor to the automatic exploration of urban forms based on design analytics and evaluation of urban metrics. The role of the architect begins to shift from the designer of objects to the designer of processes with urban planning following a trajectory of data-generated and contextual specific design.
keywords Parametric Modelling; Urban Modelling; Scripting; Urban Analysis
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
doi https://doi.org/10.52842/conf.caadria.2017.467
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_333
id caadria2018_333
authors Cupkova, Dana, Byrne, Daragh and Cascaval, Dan
year 2018
title Sentient Concrete - Developing Embedded Thermal and Thermochromic Interactions for Architecture and Built Environment
doi https://doi.org/10.52842/conf.caadria.2018.2.545
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 545-554
summary Historically, architectural design focused on adaptation of built environment to serve human needs. Recently embedded computation and digital fabrication have advanced means to actuate physical infrastructure in real-time. These 'reactive spaces' have typically explored movement and media as a means to achieve reactivity and physical deformation (Chatting et al. 2017). However, here we recontextualize 'reactive' as finding new mechanisms for permanent and non-deformable everyday materials and environments. In this paper, we describe our ongoing work to create a series of complex forms - modular concrete panels - using thermal, tactile and thermochromic responses controlled by embedded networked system. We create individualized pathways to thermally actuate these surfaces and explore expressive methods to respond to the conditions around these forms - the environment, the systems that support them, their interaction and relationships to human occupants. We outline the design processes to achieve thermally adaptive concrete panels, illustrate interactive scenarios that our system enables, and discuss opportunities for new forms of interactivity within the built environment.
keywords Responsive environments; Geometrically induced thermodynamics; Ambient devices; Internet of things; Modular electronic systems
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 120HOMELOGIN (you are user _anon_400100 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002