CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 4048

_id acadia23_v3_157
id acadia23_v3_157
authors C Niquille, Simone
year 2023
title Model Home
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Well, hello. Thanks for having me. Hopefully, not everyone is too exhausted. But we'll get through it. So, you know, in some ways I feel like a guest, an intruder -- there's different words -- to a conference such as this. I am trained as a graphic designer and a photographer. But somehow, you know, I find myself between disciplines. And one of them is architecture. What we will talk about today is a project that started around 2018 called ""Model Home"", which is sort of the larger chapter. Most of the work I do is either in writing essays, as well as film. There's not enough time to show the film today, but if you are interested, just come and ask me after.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id sigradi2018_1646
id sigradi2018_1646
authors Franco Júnior, Júlio César; Costa, Heliara Aparecida; Minto Fabrício, Márcio
year 2018
title BIM and Aerial Photogrammetry: building documentation of E1 - USP São Carlos
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 574-580
summary This article demonstrates the integration process of aerial photogrammetry and BIM technologies for the purpose of supplying gaps in building documentation, resulting of changes during use-operation and maintenance of a historical building; as well as to record and document the project for future demands. For that, a research field was carried out with a RPAS – Remotely Piloted Aircraft Systems; and a study of the case of the E1 building, at USP São Carlos, a representative of the modern brazilian architecture, with few sources of information. The results demonstrate a satisfactory quality in the generation of orthomosaics for building documentation and consistent record for BIM as-is models
keywords Aerial Photogrammetry; BIM; Building documentation
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaaderis2018_110
id ecaaderis2018_110
authors Kyprianou, Stefanos, Polyviou, Pavlos, Tsaggari, Marianna and Phocas, Marios C.
year 2018
title Tall Tensegrities - A Parametric Deformation Control Analysis
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 87-94
keywords The design of tall structures with high slenderness, i.e. width/height ratio, and minimum self-weight, considers in addition to aspects of modularity, constructability and connectivity of the primary members, the static and dynamic behavior of the systems. Assuming constant mass and damping ratio over the height of the building, the structure necessitates respective definition of its stiffness properties, resulting from its configuration, i.e. geometrical stiffness, and the section properties of the members applied, for achieving controlled deformations under horizontal loading. In particular, structural deformation control is traced in the current paper in simplified means through a Finite-Element Analysis of a tall tensegrity structure with overall system dimensions of 12.12/96 m, i.e. 1/7.92 slenderness, developed in three different configurations. Furthermore, a differentiated pretension of the tension-only members of one of the systems has been applied for control of its response behavior. The parametric structural analysis of the tensegrity systems verifies the significant role of the tension-only elements in the system stabilization and horizontal response.
series eCAADe
email
last changed 2018/05/29 14:33

_id ecaade2018_397
id ecaade2018_397
authors Stellingwerff, Martijn, Gordijn, Johannetta, Ouwerkerk, Udo and Kiela, Peter
year 2018
title Improving the Online Design Education Experience
doi https://doi.org/10.52842/conf.ecaade.2018.1.401
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 401-408
summary Design education usually takes place in a studio setting, in which visual and spatial artefacts are produced, shared, improved, presented and commented. This specific setting comes with qualitative properties that allow for situated learning with object-oriented focus and interaction, combined with a rich collegial context in which ideas can flourish and certain values and ethics are cherished. Using our education platform for online learning, we noticed the lack of support for typical creative and social design studio aspects, while factual classroom education was well supported. This paper describes how we attempt to translate the qualities of the studio education setting into an online environment for design education. Our approach is not to build a Virtual Design Studio (VDS) from the bottom up, but instead, to build on top of our universities' online education platform of choice. The paper commences with a short description of design education in a studio setting. Then a number of basic principles of design studio education is applied to the development of two Massive Open Online Courses (MOOCs). In the last section we discuss the different setups and compare the online aspects with on campus design studio education.
keywords Online design education; MOOC; Creative Learning Environment
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id sigradi2018_1508
id sigradi2018_1508
authors Akta?, Begüm; Birgül Çolako?lu, M.
year 2018
title Systematic approach to design builds for freeform façade: AFA Cultural Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 176-182
summary The design and construction of the complex, irregularly shaped, and curvilinear building forms are also known as freeform architecture, have gained an interest form architects and engineers. This paper presents how freeform façade designs are defined with its curvilinear geometric characteristics and the systematic approach that is used to design and implement them. The proposed method incorporates product design and integral façade construction approach at AFA Cultural Center freeform façade implementation. Therefore, the paper aims to improve the viability of the proposed method and decreasing the gap between the other disciplines and architects in a systematic way without losing the creativity of the architects.
keywords  Parametric modeling; Systematic approach; Design thinking; System thinking; Freeform façade design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2018_377
id ecaade2018_377
authors Beaudry Marchand, Emmanuel, Dorta, Tomás and Pierini, Davide
year 2018
title Influence of Immersive Contextual Environments on Collaborative Ideation Cognition - Through design conversations, gestures and sketches
doi https://doi.org/10.52842/conf.ecaade.2018.2.795
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 795-804
summary In the design studio, Virtual Reality (VR) has mainly been included as a visualization tool to explore pre-designed ideas developed in traditional 3D software or using pen on paper. Meanwhile, a reshaping of the design process has been taking place, bringing forward interaction/experiential concerns and co-design approaches throughout disciplines in a push for a more thorough consideration of projects' contexts. This paper reports an exploratory study of how immersive contextual representations influence the co-ideation process. Audio-video recordings of co-ideation sessions (9) from a pedagogical studio were analyzed through verbal and representational (sketches and design gestures) exchanges as occurring in three different conditions: (a) pen on paper, immersive headset-free VR (b) without, and (c) with the use of contextual immersive environment (photogrammetric scans and 3D models). Results show that, although design conversations were similar across all conditions, design gestures were more often directly related to- than independent from the graphical representation only when using an immersive contextual environment. Furthermore, the rate of sketching episodes in general and sketching explanations were considerably lower in this condition. This could imply that use of pre-made context greatly reduces the need of sketching elements to support a clearer co-ideation.
keywords Immersive context; Design gestures; Design conversations; Sketches; Co-design studio; Design cognition
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_405
id ecaade2018_405
authors Belém, Catarina and Leit?o, António
year 2018
title From Design to Optimized Design - An algorithmic-based approach
doi https://doi.org/10.52842/conf.ecaade.2018.2.549
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 549-558
summary Stringent requirements of efficiency and sustainability lead to the demand for buildings that have good performance regarding different criteria, such as cost, lighting, thermal, and structural, among others. Optimization can be used to ensure that such requirements are met. In order to optimize a design, it is necessary to generate different variations of the design, and to evaluate each variation regarding the intended criteria. Currently available design and evaluation tools often demand manual and time-consuming interventions, thus limiting design variations, and causing architects to completely avoid optimization or to postpone it to later stages of the design, when its benefits are diminished. To address these limitations, we propose Algorithmic Optimization, an algorithmic-based approach that combines an algorithmic description of building designs with automated simulation processes and with optimization processes. We test our approach on a daylighting optimization case study and we benchmark different optimization methods. Our results show that the proposed workflow allows to exclude manual interventions from the optimization process, thus enabling its automation. Moreover, the proposed workflow is able to support the architect in the choice of the optimization method, as it enables him to easily switch between different optimization methods.
keywords Algorithmic Design; Algorithmic Analysis; Algorithmic Optimization; Lighting optimization; Black-Box optimization
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1869
id sigradi2018_1869
authors Borda Almeida da Silva, Adriane; dos Santos Nunes, Cristiane; Curth Goulart, Stefani; Harter Silva, Bethina
year 2018
title Impressions of a touristic route: between the null-dimensional and the three-dimensional
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 638-643
summary This paper reports the experience of a public university digital manufacturing laboratory in producing tactile models to support a tourist route in a historic center. The report includes the reflection on the social and formative, cultural and professional meaning attributed to this production. For this, it uses the theory of the climbing of abstraction, by Vilém Flusser, problematizing the dimensional logic of the media used. This is the representation of the architectural set of the surroundings of a square. Architecture students were involved in the production of the models which were validated by visually impaired individuals.
keywords Tactile models; Universal design; Digital manufacturing; Architectural heritage; Tourist route
series SIGRADI
email
last changed 2021/03/28 19:58

_id ascaad2023_083
id ascaad2023_083
authors Borges, Marina; Karantino, Lucas; Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source C+++: Computation, Culture, and Context – Proceedings of the 11th International Conference of the Arab Society for Computation in Architecture, Art and Design (ASCAAD), University of Petra, Amman, Jordan [Hybrid Conference] 7-9 November 2023, pp. 293-304.
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to prioritize pedestrians and promote active mobility, giving them priority and encouraging walking, as presented in the concepts of TOD (Transit-Oriented Development). Although the master plan suggests that areas located in the regional centrality of Belo Horizonte are enhancing active mobility, residents may still need to use individual or public transportation due to long distances when accessing basic services on foot. In peripheral areas of the city of Belo Horizonte, are there favorable walkability conditions for the residents? Thus, the aim of this research is to use digital technologies to investigate, through a parametric performative model, the quality of the existing routes, with a focus on the peripheral areas of the city. Based on the results obtained, it will be possible to conclude whether there are discrepancies between what is presented in the master plan and, ultimately, to identify potential solutions for the area based on metrics that qualify and enhance active mobility. These solutions may vary according to the specific needs of the location.
series ASCAAD
email
last changed 2024/02/13 14:40

_id sigradi2018_1476
id sigradi2018_1476
authors Brarda, María Cecilia
year 2018
title Type in motion: The representation of the illocutionary force through the expression of the kinetic typographic form
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1142-1149
summary The objective is to analyze how type in motion contributes to the representation and transmission of the illocutionary force of a statement in the field of communication and digital animation. This is a context characterized by being a hybrid of image and sound, of a esthetic and technological diversity and mixtures of representation techniques and animation of different types of motion graphics. The expressive form of the signs of writing is crossed by the variables time, movement and sound and from here their ability to transmit the illocutionary force is enhanced.
keywords Typography in movement; Illocutionary force; Kinetic writing; Digital animation; Typographic form
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2019_204
id caadria2019_204
authors Calixto, Victor, Gu, Ning and Celani, Gabriela
year 2019
title A Critical Framework of Smart Cities Development
doi https://doi.org/10.52842/conf.caadria.2019.2.685
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 685-694
summary This paper investigates through a review of the current literature on smart cities, reflecting different concepts across different political-social contexts, seeking to contribute to the establishment of a critical framework for smart cities development. The present work provides a review of the literature of 250 selected publications from four databases (Scielo, ScienceDirect, worldwide science, and Cumincad), covering the years from 2012 to 2018. Publications were categorised by the following steps: 3RC framework proposed by Kummitha and Crutzen (2017), the main political sectors of city planning, implementation strategies, computational techniques, and organisation rules. The information was analised graphically trying to identify tendencies along the time, and also, seeking to explore future possibilities for implementations in different political-social contexts. As a case of study, Australia and Brazil were compared using the proposed framework.
keywords smart city; smart cities; literature review
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2018_1329
id sigradi2018_1329
authors Campos Fialho, Beatriz; A. Costa, Heliara; Logsdon, Louise; Minto Fabrício, Márcio
year 2018
title CAD and BIM tools in Teaching of Graphic Representation for Engineering
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 961-968
summary BIM technology has represented an advance and a break of the design process’ paradigm, impacting both academia and construction market. Reporting a didactic experience in the Civil Engineering graduation, this article aims to understand the teaching and learning process of graphic representation, by using CAD and BIM tools. The research included Literature Review and Empirical Study, whose data collection was based on the application of questionnaires, practical exercises and theoretical test with the students. As a contribution, we highline the complementary nature of the tools and the potentialities of BIM for teaching graphic representation.
keywords Graphic Representation; CAD System Education; CAE System Education. BIM
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2018_187
id ecaade2018_187
authors Chatzivasileiadi, Aikaterini, Hosney Lila, Anas M., Lannon, Simon and Jabi, Wassim
year 2018
title The Effect of Reducing Geometry Complexity on Energy Simulation Results
doi https://doi.org/10.52842/conf.ecaade.2018.2.559
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 559-568
summary Accuracy and time are metrics inherently associated with the design process and the energy performance simulation of buildings. The accurate representation of the building is an essential requirement for energy analysis, which comes with the expense of time; however, this is in contrast with the need to minimise the simulation time in order to make it compatible with design times. This is a particularly interesting aspect in the case of complex geometries, which are often simplified for use in building energy performance simulation. The effects of this simplification on the accuracy of simulation results are not usually reported. This paper explored these effects through a systematic analysis of several test cases. The results indicate that the use of orthogonal prisms as simplified surrogates for buildings with complex shapes presents a worst-case scenario that should be avoided where possible. A significant reduction of geometry complexity by at least 50% can also be achieved with negligible effects on simulation results, while minimising the time requirements. Accuracy, however, deteriorates rapidly below a critical threshold.
keywords Building performance simulation; Energy analysis; Geometry simplification
series eCAADe
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 202HOMELOGIN (you are user _anon_609824 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002