CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 629

_id ecaade2018_370
id ecaade2018_370
authors Abdelmohsen, Sherif, Massoud, Passaint, El-Dabaa, Rana, Ibrahim, Aly and Mokbel, Tasbeh
year 2018
title A Computational Method for Tracking the Hygroscopic Motion of Wood to develop Adaptive Architectural Skins
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 253-262
doi https://doi.org/10.52842/conf.ecaade.2018.2.253
summary Low-cost programmable materials such as wood have been utilized to replace mechanical actuators of adaptive architectural skins. Although research investigated ways to understand the hygroscopic response of wood to variations in humidity levels, there are still no clear methods developed to track and analyze such response. This paper introduces a computational method to analyze, track and store the hygroscopic response of wood through image analysis and continuous tracking of angular measurements in relation to time. This is done through a computational closed loop that links the smart material interface (SMI) representing hygroscopic response with a digital and tangible interface comprising a Flex sensor, Arduino kit, and FireFly plugin. Results show no significant difference between the proposed sensing mechanism and conventional image analysis tracking systems. Using the described method, acquiring real-time data can be utilized to develop learning mechanisms and predict the controlled motion of programmable material for adaptive architectural skins.
keywords Hygroscopic properties of wood; Adaptive architecture; Programmable materials; Real-time tracking
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_138
id ecaade2018_138
authors Abdulmawla, Abdulmalik, Schneider, Sven, Bielik, Martin and Koenig, Reinhard
year 2018
title Integrated Data Analysis for Parametric Design Environment - mineR: a Grasshopper plugin based on R
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 319-326
doi https://doi.org/10.52842/conf.ecaade.2018.2.319
summary In this paper we introduce mineR- a tool that integrates statistical data analysis inside the parametric design environment Grasshopper. We first discuss how the integration of statistical data analysis would improve the parametric modelling workflow. Then we present the statistical programming language R. Thereafter, we show how mineR is built to facilitate the use of R in the context of parametric modelling. Using two example cases, we demonstrate the potential of implementing mineR in the context of urban design and analysis. Finally, we discuss the results and possible further developments.
keywords Statistical Data Analysis; Parametric Design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia18_394
id acadia18_394
authors Adel, Arash; Thoma, Andreas; Helmreich, Matthias; Gramazio, Fabio; Kohler, Matthias
year 2018
title Design of Robotically Fabricated Timber Frame Structures
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 394-403
doi https://doi.org/10.52842/conf.acadia.2018.394
summary This paper presents methods for designing nonstandard timber frame structures, which are enabled by cooperative multi-robotic fabrication at building-scale. In comparison to the current use of automated systems in the timber industry for the fabrication of plate-like timber frame components, this research relies on the ability of robotic arms to spatially assemble timber beams into bespoke timber frame modules. This paper investigates the following topics: 1) A suitable constructive system facilitating a just-in-time robotic fabrication process. 2) A set of assembly techniques enabling cooperative multi-robotic spatial assembly of bespoke timber frame modules, which rely on a man-machine collaborative scenario. 3) A computational design process, which integrates architectural requirements, fabrication constraints, and assembly logic. 4) Implementation of the research in the design and construction of a multi-story building, which validates the developed methods and highlights the architectural implications of this approach.
keywords full paper, fabrication & robotics, generative design, computation, timber architecture
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1628
id sigradi2018_1628
authors Agirbas, Asli
year 2018
title The Use of Multi-Software in Undergraduate Architectural Design Studio Education: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1059-1064
summary In the architectural design process, instead of using the computer programs effectively, the ability of choosing the most suitable program for the purpose takes place. However, different programs used in the design process serve different purposes. Therefore, the use of more than one program throughout the project design process arises. Every day the number of programs used increases rapidly. Hence, the designers find difficult to adapt this speed. The same applies to the students of architectural design studio course. Therefore, in this study with undergraduate architecture students, a pilot study focusing on the use of multi-software was conducted within the scope of architectural design studio. The process and outputs were evaluated.
keywords Use of multi-software; Contextual design; Architectural design education; CAAD
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1619
id sigradi2018_1619
authors Agirbas, Asli
year 2018
title Creating Non-standard Spaces via 3D Modeling and Simulation: A Case Study
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1051-1058
summary Especially in the film industry, architectural spaces away from Euclidean geometry are brought to foreground. The best environment in which such spaces can be designed, is undoubtedly the 3D modeling environment. In this study, an experimental study was carried out on the creation of alternative spaces with undergraduate architectural students. Via using 3D modeling and various simulation techniques in the Maya software, students created spaces, which were away from the traditional architectural spaces. Thus, in addition to learning the 3D modeling software, architectural students learned to use animation and simulation as a part of design, not just as a presentation tool, and opening up new horizons for non-standard spaces was provided.
keywords 3D Modeling; Simulation; Animation; CAAD; Maya; Non-standard spaces
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
doi https://doi.org/10.52842/conf.acadia.2018.216
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1508
id sigradi2018_1508
authors Akta?, Begüm; Birgül Çolako?lu, M.
year 2018
title Systematic approach to design builds for freeform façade: AFA Cultural Center
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 176-182
summary The design and construction of the complex, irregularly shaped, and curvilinear building forms are also known as freeform architecture, have gained an interest form architects and engineers. This paper presents how freeform façade designs are defined with its curvilinear geometric characteristics and the systematic approach that is used to design and implement them. The proposed method incorporates product design and integral façade construction approach at AFA Cultural Center freeform façade implementation. Therefore, the paper aims to improve the viability of the proposed method and decreasing the gap between the other disciplines and architects in a systematic way without losing the creativity of the architects.
keywords  Parametric modeling; Systematic approach; Design thinking; System thinking; Freeform façade design
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_232
id ecaade2018_232
authors Al Bondakji, Louna, Chatzi, Anna-Maria, Heidari Tabar, Minoo, Wesseler, Lisa-Marie and Werner, Liss C.
year 2018
title VR-visualization of High-dimensional Urban Data
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 773-780
doi https://doi.org/10.52842/conf.ecaade.2018.2.773
summary The project aims to investigate the possibility of VR in a combination of visualizing high-dimensional urban data. Our study proposes a data-based tool for urban planners, architects, and researchers to 3D visualize and experience an urban quarter. Users have a possibility to choose a specific part of a city according to urban data input like "buildings, streets, and landscapes". This data-based tool is based on an algorithm to translate data from Shapefiles (.sh) in a form of a virtual cube model. The tool can be scaled and hence applied globally. The goal of the study is to improve understanding of the connection and analysis of high-dimensional urban data beyond a two-dimensional static graph or three-dimensional image. Professionals may find an optimized condition between urban data through abstract simulation. By implementing this tool in the early design process, researchers have an opportunity to develop a new vision for extending and optimizing urban materials.
keywords Abstract Urban Data Visualization; Virtual Reality; Geographical Information System
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_172
id ecaade2018_172
authors Al-Douri, Firas
year 2018
title The Employment of Digital Simulation in the Planning Departments in US Cities - How does it affect design and decision-making processes?
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 539-548
doi https://doi.org/10.52842/conf.ecaade.2018.2.539
summary The increased interactivity of digital simulation tools has offered a wide range of opportunities that may provoke a paradigmatic shift in urban design practice. Yet, research results did not provide any clear evidence that such shift seems to exist. Further studies are required to examine the methods and impact of their usage on decision-making and design outcome. To that goal, this research uses the single-case study design that has been pursued in three phases: literature review, online survey, and semi-structured interviews. The results have shown inadequacies, inconsistency, and ineffectiveness of usage of the tools that are most appropriate to the design activities of each phase and thus a limited impact on critical areas of the decision-making. The impact of the tools' usage is found to be correlated with not only the extent of their usage, but also with a variety of procedural and substantive factors such as the plan methodology, extent of tool's usage, choice of the appropriate tool, and planners' skills and capabilities in using those tools.
keywords Urban Simulation ; Urban Design Practice
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816103
id ijac201816103
authors Alani, Mostafa W.
year 2018
title Algorithmic investigation of the actual and virtual design space of historic hexagonal-based Islamic patterns
source International Journal of Architectural Computing vol. 16 - no. 1, 34-57
summary This research challenges the long-standing paradigm that considers compositional analysis to be the key to researching historical Islamic geometric patterns. Adopting a mathematical description shows that the historical focus on existing forms has left the relevant structural similarities between historical Islamic geometric patterns understudied. The research focused on the hexagonal-based Islamic geometric patterns and found that historical designs correlate to each other beyond just the formal dimension and that deep, morphological connections exist in the structures of historical singularities. Using historical evidence, this article identifies these connections and presents a categorization system that groups designs together based on their “morphogenetic” characteristics.
keywords Islamic geometric patterns, morphology, computations, digital design, algorithmic thinking
series journal
email
last changed 2019/08/07 14:03

_id sigradi2018_1277
id sigradi2018_1277
authors Alani, Mostafa
year 2018
title Heritage at Stake: Computational Design Processes for Rescuing Mosul’s Architectural Identity
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 165-169
summary A generative algorithm for exploring the virtual design space of historic houses in the city of Mosul is presented. The method aims to progressively engage the spatial organization of traditional houses through investigating existing examples.
keywords Traditional Mosul houses; Generative design; Shape grammar; Computation
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1867
id sigradi2018_1867
authors Alawadhi, Mohammad; Yan, Wei
year 2018
title Geometry from 3D Photogrammetry for Building Energy Modeling
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 631-637
summary Building energy modeling requires skilled labor, and there is a need to make environmental assessments of buildings more efficient and accessible for architects. A building energy model is based on collecting data from the real, physical world and representing them as a digital model. Recent digital photogrammetry tools can reconstruct real-world geometry by transforming photographs into 3D models automatically. However, there is a lack of accessible workflows that utilize this technology for building energy modeling and simulations. This paper presents a novel methodology to generate a building energy model from a photogrammetry-based 3D model using available tools and computer algorithms.
keywords 3D scanning; Building energy modeling; Building energy simulation; Digital photogrammetry; Photo-to-BEM
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2018_162
id ecaade2018_162
authors Alkadri, Miktha, Turrin, Michela and Sariyildiz, Sevil
year 2018
title Toward an Environmental Database - Exploring the material properties from the point cloud data of the existing environment
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 263-270
doi https://doi.org/10.52842/conf.ecaade.2018.2.263
summary The utilization of point cloud as a 3D laser scanning product has reached across multi-disciplines in terms of data processing, data visualization, and data analysis. This study particularly investigates further the use of typical attributes of raw point cloud data consisting of XYZ (position information), RGB (colour information) and I (intensity information). By exploring the optical and thermal properties of the given point cloud data, it aims at compensating the material and texture information that is usually remained behind by architects during the conceptual design stage. Calculation of the albedo, emissivity and the reflectance values from the existing context specifically direct the architects to predict the type of materials for the proposed design in order to keep the balance of the surrounding Urban Heat Island (UHI) effect. Therefore, architects can have a comprehensive analysis of the existing context to deal with the microclimate condition before a design decision phase.
keywords point cloud data; material characteristics; albedo; emissivity; reflectance value
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2018_1535
id sigradi2018_1535
authors Almeida, Caio; Brandão, Guilherme; Lima, Fernando; Borges, Marcos
year 2018
title Spatial Proxemics: experiments and contributions of anthropological relationships in digital media
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1279-1284
summary Proxemics was first defined by Edward. T. Hall as being the relations between non-verbal communications in a determined space. This paper aims to promote a theoretical interpolation between diverse study fields with new contemporary urbanism paradigms supported by technology and anthropological relations. In this optics, to provide a better understanding of possible characteristics within the proxemics theory can translate into a better spatial understanding and city improvement from an analysis methodology using digital tools.
keywords Proxemics; Architecture; Urbanism; Phenomenology; Digital space
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1300
id sigradi2018_1300
authors Alves de Almeida, Marcela; de Souza Nogueira, Yasmim
year 2018
title Parametricism as style: the relationship between methodology of scientific research programmes and parametric design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 17-22
summary During the 1990s many architects, who dissociated from critical theory, were looking for new design methodologies that did not confine themselves as stylistic currents. One of these propractice movement is done by means of parametric design. Aiming to investigate the boundaries between methodology and style, this paper proposes to answer the question: does the parametric architecture constitute a new style, as Patrik Schumacher says? It reviews Heinrich Wölfflin concept of style in the contemporary context; it presents Imre Lakatos theory (methodology of scientific research programmes) and how Schumacher appropriates of it followed by a critical reflection on the limits of such appropriation.
keywords Parametric design; Style
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1484
id sigradi2018_1484
authors Alves de Oliveira, Amanda Aline; Sakurai, Tatiana
year 2018
title The transformations of the "Do-It-Yourself" culture and the context provided by digital manufacturing in furniture design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1258-1263
summary This article seeks to deal with the evolution of the DIY culture during its most important periods for the history of furniture and confers great importance to the present reality that provides the constitution of these artifacts through digital manufacturing. Thus, issues such as the quality of what has been produced and even the relevance of design professionals of the culture of making in the digital era are treated.
keywords DIY; Digital fabrication; Furniture; Fab Labs Livres SP
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
doi https://doi.org/10.52842/conf.caadria.2018.1.245
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_613673 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002