CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2096

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v3_157
id acadia23_v3_157
authors C Niquille, Simone
year 2023
title Model Home
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Well, hello. Thanks for having me. Hopefully, not everyone is too exhausted. But we'll get through it. So, you know, in some ways I feel like a guest, an intruder -- there's different words -- to a conference such as this. I am trained as a graphic designer and a photographer. But somehow, you know, I find myself between disciplines. And one of them is architecture. What we will talk about today is a project that started around 2018 called ""Model Home"", which is sort of the larger chapter. Most of the work I do is either in writing essays, as well as film. There's not enough time to show the film today, but if you are interested, just come and ask me after.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id acadia23_v1_166
id acadia23_v1_166
authors Chamorro Martin, Eduardo; Burry, Mark; Marengo, Mathilde
year 2023
title High-performance Spatial Composite 3D Printing
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 166-171.
summary This project explores the advantages of employing continuum material topology optimization in a 3D non-standard lattice structure through fiber additive manufacturing processes (Figure 1). Additive manufacturing (AM) has gained rapid adoption in architecture, engineering, and construction (AEC). However, existing optimization techniques often overlook the mechanical anisotropy of AM processes, resulting in suboptimal structural properties, with a focus on layer-by-layer or planar processes. Materials, processes, and techniques considering anisotropy behavior (Kwon et al. 2018) could enhance structural performance (Xie 2022). Research on 3D printing materials with high anisotropy is limited (Eichenhofer et al. 2017), but it holds potential benefits (Liu et al. 2018). Spatial lattices, such as space frames, maximize structural efficiency by enhancing flexural rigidity and load-bearing capacity using minimal material (Woods et al. 2016). From a structural design perspective, specific non-standard lattice geometries offer great potential for reducing material usage, leading to lightweight load-bearing structures (Shelton 2017). The flexibility and freedom of shape inherent to AM offers the possibility to create aggregated continuous truss-like elements with custom topologies.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaadesigradi2019_249
id ecaadesigradi2019_249
authors Chiarella, Mauro, Gronda, Luciana and Veizaga, Martín
year 2019
title RILAB - architectural envelopes - From spatial representation (generative algorithm) to geometric physical optimization (scientific modeling)
doi https://doi.org/10.52842/conf.ecaade.2019.3.017
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 17-24
summary Augmented graphical thinking operates by integrating algorithmic, heuristic, and manufacturing processes. The Representation and Ideation Laboratory (RILAB-2018) exercise begins with the application of a parametric definition developed by the team of teachers, allowing for the construction of structural systems by the means of the combination of segmental shells and bending-active. The main objetive is the construction of a scientific model of simulation for bending-active laminar structures has brought into reality trustworthy previews for architectural envelopes through the interaction of parametrized relational variables. This way we put designers in a strategic role for the building of the pre-analysis models, allowing more preciseness at the time of picking and defining materials, shapes, spaces and technologies and thus minimizing the decisions based solely in the definition of structural typological categories, local tradition or direct experience. The results verify that the strategic integration of models of geometric physical optimization and spatial representation greatly expand the capabilities in the construction of the complex system that operates in the act of projecting architecture.
keywords architectural envelopes; augmented graphic thinking; geometric optimization; bending-active
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id sigradi2018_1363
id sigradi2018_1363
authors Chiarella, Mauro; Martini, Sebastian; Dalla Costa, Matías; Veizaga, Martín
year 2018
title Makers experiences: Upcycling, interfaces and reactive devices in Industrial Design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1220-1226
summary The Maker culture emphasizes collaborative learning and distributed knowledge. Expands exponentially the multiplicity of resources and possible processes. Finding effective and efficient ways to use them to develop predictive models that focus decision-making towards performance-oriented designs is the new challenge. Through the application of didactic strategies of problem-based learning will analyze five experiences of the degree of Industrial Design, Course IMD, National University of the Littoral based on logic of personalized manufacturing, augmented graphic thinking and collective creation.
keywords Crowthinking; Upcycling; Arduino; Visual programming
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_438
id ecaade2018_438
authors Das, Subhajit
year 2018
title Interactive Artificial Life Based Systems, Augmenting Design Generation and Evaluation by Embedding Expert Opinion - A Human Machine dialogue for form finding.
doi https://doi.org/10.52842/conf.ecaade.2018.1.085
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 85-94
summary Evolution of natural life and subsequently selection of life forms is an interesting topic that has been explored multiple times. This area of research and its application has high relevance in evolutionary design and automated design generation. Taking inspiration from Charles Darwin's theory, all biological species were formed by the process of evolution based on natural selection of the fittest (Darwin, n.d.) this paper explains exploratory research showcasing semi-automatic design generation. This is realized by an interactive artificial selection tool, where the designer or the end user makes key decisions steering the propagation and breeding of future design artifacts. This paper, describes two prototypes and their use cases, highlighting interaction based optimal design selection. One of the prototypes explains a 2d organic shape creator using a metaball shape approach, while the other discusses a spatial layout generation technique for conceptual design.
keywords design generation; implicit surfaces; artificial life; decision making; artificial selection; spatial layout generation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia23_v1_34
id acadia23_v1_34
authors Gascon Alvarez, Eduardo; Curth, Alexander (Sandy); Feickert, Kiley; Martinez Schulte, Dinorah; Mueller, Caitlin; Ismail, Mohamed
year 2023
title Algorithmic Design for Low-Carbon, Low-Cost Housing Construction in Mexico
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 34-38.
summary Mexico is one of the most urbanized countries in the Global South, and simultaneously faces a rapidly increasing population and a deluge of inadequate housing (URBANET 2019). In 2016, it was estimated that 40 percent of all private residences in Mexico were considered inadequate by UN-Habitat (UN-Habitat 2018). As informal housing constitutes over half of all Mexican housing construction, the most vulnerable groups of the population are particularly impacted. Therefore, there is a serious need to innovate in the area of low-cost building construction for housing in Mexico. This research explores how shape-optimized concrete and earth construction could help provide adequate housing without jeopardizing the country’s commitment to sustainability.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_180
id acadia23_v1_180
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title InterLoop
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 180-187.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v3_169
id acadia23_v3_169
authors Kanngieser, AM
year 2023
title Ethics and Ecocidal Listening: Oceanic Refractions as an Artistic Case Study
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary In 2018 I was invited to visit the archipelago of Kiribati, located in the Pacific Ocean around 1000 miles from Hawaii. A big ocean state, Kiribati holds a land mass of around 315 sq. miles and an oceanic economic zone of 1,328,890 sq. mi. Tarawa, the most inhabited of the islands peaks at around 3 m above sea level. I went to Kiribati in part to meet with Dr Teweiariki Teaero, a renowned scholar, poet and educator who had directed the Oceania Center at the University of the South Pacific in Fiji for many years before returning to his homeland where at the time he had been planning on running for government. Teweiariki spoke with me at length about the status of Kiribati as one of the already most critically affected frontline nations. I asked him what was a lesson for non-Pacific Islanders to learn about understanding everyday life there. He said to me “Two ears, one mouth, don’t talk too much. Learn to listen more. Not only to hear, but to be able to develop another thing and that is to be able to interpret. These things are different, they occur at different levels. The hearing and the interpretation of the sound…it’s very much part of our world” (Teaero 2018).
series ACADIA
type keynote
email
last changed 2024/04/17 14:00

_id ecaade2018_224
id ecaade2018_224
authors Kay, Ipek, Akgün, Bahar, Tümerdem, Deniz and Bingol, Cemal Koray
year 2018
title A Sensory and Bodily Approach to Curriculum Construction for Design Education
doi https://doi.org/10.52842/conf.ecaade.2018.1.333
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 333-340
summary This paper proposes a framework for integrating physical and digital design medium addressing a sensorial aspect of design thinking. The theoretical framework, the process and the results of two consecutive exercises taught as a preliminary project of an interior design studio are introduced and discussed. The approach aims to determine intuitive modes of communication between students and digital environments.
keywords digital design; design theory; design methodology; design thinking; interaction design; sensorial experience
series eCAADe
email
last changed 2022/06/07 07:52

_id sigradi2018_1510
id sigradi2018_1510
authors Lafluf Cuevas, Marcos; Barber Sarasola, Gabriela; García Amen, Fernando
year 2018
title Emerging ecosystems of information and city: Anglo digital repository
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1023-1030
summary This paper focuses on the implementation of a digital repository and content management of the Museo de la Revolución Industrial, in Fray Bentos, as part of a project carried out in the context of the I+D project "La ciudad inteligente; un palimpsesto digital", currently under development in the Laboratory of Advanced Digital Visualization (Vidialab) of the Faculty of Architecture, Design and Urbanism (FADU). The project main theme is the emerging paradigm of Smart Cities with focus on the territory as an integral cultural landscape. The experience, implementation, processed involved and related topics, are described and analyzed theoretically, in the search of architectural and historical heritage dissemination.
keywords Heritage; Smart City; TIC; Digital repository; Dissemination of heritage; Free software
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_437
id ecaade2018_437
authors Mostafavi, Sina, Bier, Henriette, N. Kemper, Benjamin and L. Fischer, Daniel
year 2018
title Robotic Materialization of Architectural Hybridity - Modelling, Computation and Robotic Production of Multi-materiality
doi https://doi.org/10.52842/conf.ecaade.2018.2.301
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 301-308
summary Considering both architectural and constructional aspects of the built environment, hybridity or multi-materiality is essential to generate functional habitable spaces. Buildings consist of subsystems that each require different and sometimes conflicting material attributes and behaviours. In this context, expanding the solution space for material properties in architectural applications can be achieved through the integration of innovative design computation and production methods. With this focus, the paper presents prototyping processes and frames a discourse on robotic materialisation of architectural hybridity, ranging from micro or material to macro or component scales. The paper discusses three case studies, each with a specific focus on digital modelling, computation and robotic production of hybrid systems. The conclusion outlines how robotic fabrication of architectural multi-materiality redefines, informs and extends methods of design computation and materialisation.
keywords Hybridity; Multimode robotic production; Robotic 3D Printing; Robotic subtractive manufacturing; Material computation; Multi-materiality
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id sigradi2023_243
id sigradi2023_243
authors O. Oporto, Italo, Martínez Arias, Andrea and Villouta Gutierrez, Daniela
year 2023
title Iluminación y configuración espacial: Una metodología de análisis íntegra: El caso del Servicio de Psiquiatría Guillermo Grant Benavente en Concepción, Chile.”
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 385–396
summary Our everyday environment plays a significant role in shaping our social and emotional interactions. It has been empirically evidenced that natural daylight mitigates depression, insomnia, and other disorders (Weber, 2022). This resonates with the fact that individuals with disrupted circadian rhythms are more susceptible to mental health perturbations (Menculini et al., 2018). The current investigation delves into the correlation between luminosity and spatial configuration within the Guillermo Grantt Benavente Psychiatry Service in Concepción, Chile. The contention is that proficient spatial connectivity and exposure to natural daylight can potentially enhance therapeutic dimensions. The overarching objective is to comprehend this nexus for formulating an architectural design methodology. Specific objectives encompass: 1. Defining the communal spaces under scrutiny; 2. Analyzing luminosity and spatial attributes. The methodological approach encompasses a hybrid framework encompassing interviews, spatial analysis, and illuminance measurements. An intricate interrelationship among preferred spaces, illuminance, and spatial characteristics is anticipated.
keywords Environment, Lighting, Space Syntax, Mental health, Psychiatric residence
series SIGraDi
email
last changed 2024/03/08 14:07

_id caadria2021_262
id caadria2021_262
authors Olthof, Owen, Globa, Anastasia and Stracchi, Paolo
year 2021
title SISTEMA NERVI - Sustainable Production of Optimised Floor Slabs Through Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2021.1.723
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 723-732
summary 'Sistema Nervi' (the Nervi System) invented by Pier Luigi Nervi greatly economised the production of complex concrete forms optimised in both material usage and structurally. However it did not translate well into other contexts due to labour and material considerations (Leslie, 2018). This paper explores novel methodologies of producing optimised floor slabs and concrete structures, using digital fabrication techniques, focusing on both labour economisation and sustainability principles. A module from the Australia Square lobby slab has been used as the set geometry and was reproduced using differing techniques of fabrication for a comparative study. The study was conducted at scale (1:20). The viability for production at full scale (1:1) for manufacturing is discussed. The assessment criteria for the tests are divided into four categories: Cost, Time, Performance, and Sustainability. 3D printing of PLA plastic and ceramic clay extrusion printing has been used to produce removable or degradable formworks. These technologies have been selected due to their current market availability and associated costs. This study hopes to introduce improved methodologies for producing optimized concrete forms, as well as the sustainability potentials of a degradable formwork such as ceramic clay. Both systems were ultimately able to produce workable formworks for optimised shapes and showed promise for reducing labour involved as well as presenting with material sustainability for discussion.
keywords Concrete formwork; Sustainability; Degradable formwork; Optimised concrete; Advanced fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2018_309
id caadria2018_309
authors Oprean, Danielle, Verniz, Debora, Zhao, Jiayan, Wallgrün, Jan Oliver, Duarte, José P. and Klippel, Alexander
year 2018
title Remote Studio Site Experiences: Investigating the Potential to Develop the Immersive Site Visit
doi https://doi.org/10.52842/conf.caadria.2018.1.421
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 421-430
summary Immersive technologies are now enabling better and more affordable immersive experiences, offering the opportunity to revisit their use in the architectural and landscape studio to gain site information. Considering when travel to a site is limited or not possible, immersive experiences can help with conveying site information by overcoming issues faced in earlier virtual studios. We focused on developing three applications to understand the workflow for incorporating site information to generate an immersive site experience. The applications were implemented in a semester-long joint architecture and landscape architecture studio focused on remotely designing for the Santa Marta informal settlement in Rio, Brazil. Preliminary results of implementing the applications indicate a positive outlook towards using immersive experiences for site information particularly when a site is remote.
keywords immersive experience; site visit; virtual reality
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2018_420
id ecaade2018_420
authors Peters, Brady, Akiyama, Mitchell, Abou Ras, Ous and Lamb, Sean
year 2018
title Spatial Sonic Network - Designing and prototyping acoustic mirrors for communication
doi https://doi.org/10.52842/conf.ecaade.2018.1.571
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 571-580
summary The Spatial Sonic Network is a proposal for a series of parabolic acoustic mirrors that collect, focus, and translate sound. Computational tools were used extensively throughout the project, to realize algorithmic logic, to integrate acoustic performance into the architectural design process, and to link design models to fabrication machinery. While conceptually straightforward, the design of acoustic mirrors, also known as sound mirrors, raised several challenges in terms of network design, geometry definition, acoustic performance simulation, prototyping, and measuring. The research and results that emerged from these challenges is the focus of this paper.
keywords Architectural Acoustics; Performance Simulation; Prototyping
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 104HOMELOGIN (you are user _anon_136344 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002