CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2698

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_444
id acadia21_444
authors Crawford, Assia
year 2021
title Mitochondrial Matrix
doi https://doi.org/10.52842/conf.acadia.2021.444
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 444-453.
summary The following project was created as part of an art residency with the Wellcome Centre for Mitochondrial Research (WCMR) at Newcastle University. The WCMR specializes in leading-edge research into mitochondrial disease, investigating causes, treatments, and ways of avoiding hereditary transmission. Mitochondria is believed to have started off as a separate species that through symbiosis came to be the powerhouse of each cell in our bodies (Hird 2009). Mitochondrial disease is a genetic disorder that is caused by genetic mutations of the DNA of the mitochondria or the cell that in turn affects the mitochondria (Bolano 2018). Mitochondria is a hereditary condition and can affect people at different stages in their lives. It can affect various organs and has a link to various types of conditions. Therefore, the patient experience is unique to each individual and the elusive nature of the condition can make it particularly challenging due to the complexity of the disorder as well as the inaccessible scale on which these variations occur (Chinnery 2014)
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2018_217
id caadria2018_217
authors Zhang, Le-Min, Jeng, Tay-Sheng and Zhang, Ruo-Xi
year 2018
title Integration of Virtual Reality, 3-D Eye-Tracking, and Protocol Analysis for Re-Designing Street Space
doi https://doi.org/10.52842/conf.caadria.2018.1.431
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 431-440
summary The objective of this paper is to develop an eye-tracking technology combined with a virtual reality system for an experimental study of an historical street design. Using protocol analysis, a set of design objects, parameters, and subjects are randomly selected for evaluation of the virtual street space of an ancient city. 3-D point-cloud data of spatial behaviors are tracked and analyzed. It is concluded that people with different cultural backgrounds each have a considerably different perception of the street space's characteristics. The methodology described in this paper can be used for spatial design of urban space in the future.
keywords Virtual Reality; Eye-Tracking; Protocol Analysis; Street Space
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia22pr_124
id acadia22pr_124
authors Ago, Viola; Tursack, Hans
year 2022
title Understorey - A Pavilion in Parts
source ACADIA 2022: Hybrids and Haecceities [Projects Catalog of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-7-4]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 124-129.
summary In the summer of 2018, our collaboration was awarded a University Design Fellowship from the Exhibit Columbus organization to design, fabricate, and build a large pavilion in Columbus, Indiana as part of a biannual contemporary architecture exhibition. Our proposal for the competition was a pavilion that would double as an ecological education center. Our inspiration for this program was triggered in part by our reading of Jane Bennett’s materialist philosophy outlined in her book Vibrant Matter (2009). Through Bennett’s lens, our design rendered our site’s context as an animate field, replete with pre-existing material composites that we wanted to celebrate through a series of displays, information boards, and artificial lighting. In this, the installation would feature samples of local plants, minerals, and rocks, indigenous to Southern Indiana.
series ACADIA
type project
email
last changed 2024/02/06 14:06

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_235
id caadria2018_235
authors Araullo, Rebekah
year 2018
title 3D Growth Morphology - Tectonics of Custom Shapes in Reciprocal Systems
doi https://doi.org/10.52842/conf.caadria.2018.1.307
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 307-316
summary Traditionally, Reciprocal Frame (RF) structures feature the use of linear materials such as rods, beams and bars. Their potential in varied curvature and doubly-curved forms illustrate ongoing advances in computation and fabrication. Flexible to using small available materials that span large areas, RF systems appeal as a popular research topic to demonstrate tectonic and engineering feats. However, RF using planar materials is a non-traditional application and is not widely explored in research. This paper discusses RF research projects that feature planar custom shapes with unique 3D tectonic capabilities. Their aesthetic properties and structural opportunities will be discussed and evaluated. The objective of this paper is to examine the use of planar materials and highlight the potential of irregular 3D reciprocal systems. The use of custom shapes in a reciprocal system and their unique growth morphologies presents a novel direction in the practice of reciprocal systems.
keywords Reciprocal Frames; Spaceframes; Computational Design; Digital Fabrication; RF Growth Morphology
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_029
id caadria2018_029
authors Ayoub, Mohammed
year 2018
title Adaptive Façades:An Evaluation of Cellular Automata Controlled Dynamic Shading System Using New Hourly-Based Metrics
doi https://doi.org/10.52842/conf.caadria.2018.2.083
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 83-92
summary This research explores utilizing Cellular Automata patterns as climate-adaptive dynamic shading systems to mitigate the undesirable impacts by excessive solar penetration in cooling-dominant climates. The methodological procedure is realized through two main phases. The first evaluates all 256 Elementary Cellular Automata possible rules to elect the ones with good visual and random patterns, to ensure an equitable distribution of the natural daylight in internal spaces. Based on the newly developed hourly-based metrics, simulations are conducted in the second phase to evaluate the Cellular Automata controlled dynamic shadings performance, and formalize the adaptive façade variation logic that maximizes daylighting and minimizes energy demand.
keywords Adaptive Façade; Dynamic Shading; Cellular Automata; Hourly-Based Metric; Performance Evaluation
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2018_1565
id sigradi2018_1565
authors Ba??k, Altan; Alaçam, Sema
year 2018
title Sharing Background Noise: Enactive Approach in Reading Auditory Space
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 100-108
summary This paper conceptualizes the Auditory space in terms of hearing process by employing the Enactive Approach. In this context, this study aims investigate the spatial awareness and proposes a research methodology to achieve access to the auditory space where places share similar background noise. This methodology consists of two phases: field recording of the pre-determined route first explored by the Spectrogram Sound Analysis (SSA) technique, secondly with the participation of 8 subjects, a survey analysis based on listening to records captured from the predefined route. This research aims to reveal potential use of SSA by relating to survey examination as a new way of reading space.
keywords Background Noise, Auditory Space, Enactive Approach, Spectrogram, Survey Examination
series SIGRADI
email
last changed 2021/03/28 19:58

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_342
id caadria2018_342
authors Bhagat, Nikita, Rybkowski, Zofia, Kalantar, Negar, Dixit, Manish, Bryant, John and Mansoori, Maryam
year 2018
title Modulating Natural Ventilation to Enhance Resilience Through Modifying Nozzle Profiles - Exploring Rapid Prototyping Through 3D-Printing
doi https://doi.org/10.52842/conf.caadria.2018.2.185
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 185-194
summary The study aimed to develop and test an environmentally friendly, easily deployable, and affordable solution for socio-economically challenged populations of the world. 3D-printing (additive manufacturing) was used as a rapid prototyping tool to develop and test a façade system that would modulate air velocity through modifying nozzle profiles to utilize natural cross ventilation techniques in order to improve human comfort in buildings. Constrained by seasonal weather and interior partitions which block the ability to cross ventilate, buildings can be equipped to perform at reduced energy loads and improved internal human comfort by using a façade system composed of retractable nozzles developed through this empirical research. This paper outlines the various stages of development and results obtained from physically testing different profiles of nozzle-forms that would populate the façade system. In addition to optimizing nozzle profiles, the team investigated the potential of collapsible tube systems to permit precise placement of natural ventilation directed at occupants of the built space.
keywords Natural ventilation; Wind velocity; Rapid prototyping; 3D-printing; Nozzle profiles
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2018_125
id caadria2018_125
authors Bungbrakearti, Narissa, Cooper-Wooley, Ben, Odolphi, Jorke, Doherty, Ben, Fabbri, Alessandra, Gardner, Nicole and Haeusler, M. Hank
year 2018
title HOLOSYNC - A Comparative Study on Mixed Reality and Contemporary Communication Methods in a Building Design Context
doi https://doi.org/10.52842/conf.caadria.2018.1.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary The integration of technology into the design process has enabled us to communicate through various modes of virtuality, while more traditional face-to-face collaborations are becoming less frequent, specifically for large scale companies. Both modes of communication have benefits and disadvantages - virtual communication enables us to connect over large distances, however can often lead to miscommunication, while face-to-face communication builds stronger relationship, however may be problematic for geographically dispersed teams. Mixed Reality is argued to be a hybrid of face-to-face and virtual communication, and is yet to be integrated into the building design process. Despite its current limitations, such as field of view, Mixed Reality is an effective tool that generates high levels of nonverbal and verbal communication, and encourages a high and equal level of participation in comparison to virtual and face-to-face communication. Being a powerful communication tool for complex visualisations, it would be best implemented in the later stages of the building design process where teams can present designs to clients or where multiple designers can collaborate over final details.
keywords Mixed Reality; Communication; Hololens; Collaboration; Virtual
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_278
id caadria2018_278
authors Caetano, In?s, Ilunga, Guilherme, Belém, Catarina, Aguiar, Rita, Feist, Sofia, Bastos, Francisco and Leit?o, António
year 2018
title Case Studies on the Integration of Algorithmic Design Processes in Traditional Design Workflows
doi https://doi.org/10.52842/conf.caadria.2018.1.111
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 111-120
summary Algorithmic design processes have enormous potential for architecture. Even though some large design offices have already incorporated such processes in their workflow, so far, these have not been seriously considered by the large majority of traditional small-scale studios. Nevertheless, as the integration of algorithmic techniques inside architectural studios does not require mastering programming skills, but rather taking advantage of a collaborative design process, small design studios are therefore able of using such strategies within their workflow. This paper discusses a series of challenges presented by one of these studios, where we had to integrate algorithmic design processes with the studio's traditional workflow.
keywords Collaborative design; Algorithmic design; Design strategies; Design workflow processes
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_086
id caadria2018_086
authors Castelo Branco, Renata and Leit?o, António
year 2018
title Algorithmic Architectural Visualization
doi https://doi.org/10.52842/conf.caadria.2018.2.557
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 557-566
summary Digitally-generated visualizations, such as renders or movies, are, nowadays, commonly used as representation methods for architectural creations. This occurs not only in final stages of the process, with the goal of selling the product's image, but also in midst creation process to express concepts and ideas. Presently, the spread of parametric and algorithmic approaches to design creates a problem for visualization, as it enables the almost effortless change of 3D models, thus requiring repeated visualization efforts to keep up with the changes applied to the design. To solve this, we propose extending the algorithmic design approach to also include the high-level description of architectural image creation. The methodology, Algorithmic Architectural Visualization (AAV), also contemplates the required preparation settings for the visualization process, and includes possible visualization productions inspired by film techniques.
keywords Algorithmic Design; Architectural Visualization; Render; Film Grammar
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_156
id caadria2018_156
authors Chee, Ryan Wei Shen, Tan, Wei Lin, Goh, Wei Hern, Amtsberg, Felix and Dritsas, Stylianos
year 2018
title Locally Differentiated Concrete by Digitally Controlled Injection
doi https://doi.org/10.52842/conf.caadria.2018.1.195
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 195-204
summary This paper presents a digital fabrication process for concrete which may be deployed for surface texturing, volumetric modification of material properties and 2D and 3D forming. We process concrete in its slurry state by locally injecting chemicals in solution which cause vigorous effervescent reaction to take place. By precise and controlled dispensing, using computer software and robotic hardware developed, we produce local differentiation in the finally set concrete artefacts. Our work contributes to additive and subtractive 3D manufacturing as well as functionally graded materials fabrication.
keywords Digital Fabrication; Additive Manufacturing; Functionally Graded Materials; Architectural Robotics.
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_118
id caadria2018_118
authors Chen, Zi-Ru, Liao, Chien-Jung and Chu, Chih-Hsing
year 2018
title An Assembly Guidance System of Tou Kung Based on Augmented Reality
doi https://doi.org/10.52842/conf.caadria.2018.1.349
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 349-358
summary Tou kung represent Chinese architecture. Due to the difficulty of learning from ancient books, some develop 3D assembly models. Still, there are limits while using 2D images for assembly instructions. The purpose of this study is to explore whether the application of AR technology can guide the process of tou kung assembly and address the recognition gap between paper illustrations and the physical assembly process. The method is to observes the user's tou kung assembly behavior and performance. Then the study proposed an dynamic simulation AR guidance system to help people not only understand the structure, but also the culture behind to reach the goal of education promotion.
keywords Augmented Reality; Tou-Kung; assembly
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_056
id caadria2018_056
authors Chirkin, Artem, Pishniy, Maxim and Sender, Arina
year 2018
title Generilized Visibility-Based Design Evaluation Using GPU
doi https://doi.org/10.52842/conf.caadria.2018.2.483
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 483-492
summary Visibility plays an important role in perception and use of an urban design, and thus often becomes a target of design analysis. This work presents a fast method of evaluating various visibility-based design characteristics, such as isovists or insolation exploiting the GPU rendering pipeline and compute shaders. The proposed method employs a two-stage algorithm on each point of interest. First, it projects the visible space around a vantage point onto an equirectangular map. Second, it folds the map using a flexibly defined function into a single value that is associated with the vantage point. Being executed on a grid of points in a 3D scene, it can be visualized as a heat map or utilized by another algorithm for further design analysis. The developed system provides nearly real-time analysis tools for an early-stage design process to a broad audience via web services.
keywords design analysis; design evaluation; GPU; isovist; insolation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2018_245
id caadria2018_245
authors Chowdhury, Shuva and Schnabel, Marc Aurel
year 2018
title An Algorithmic Methodology to Predict Urban Form - An Instrument for Urban Design
doi https://doi.org/10.52842/conf.caadria.2018.2.401
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 401-410
summary We question the recent practices of conventional and participatory urban design approaches and offer a middle approach by exploring computational design tools in the design system. On the one hand, the top-down urban planning approaches investigate urban form as a holistic matter which only can be calibrated by urban professionals. These approaches are not able to offer enough information to the end users to predict the urban form. On the other hand, the bottom-up urban design approaches cannot visualise predicted urban scenarios, and most often the design decisions stay as general assumptions. We developed and tested a parametric design platform combines both approaches where all the stakeholders can participate and visualise multiple urban scenarios in real-time feedback. Parametric design along with CIM modelling system has influenced urban designers for a new endeavour in urban design. This paper presents a methodology to generate and visualise urban form. We present a novel decision-making platform that combines city level and local neighbourhood data to aid participatory urban design decisions. The platform allows for stakeholder collaboration and engagement in complex urban design processes.
keywords knowledge-based system; algorithmic methodology ; design decision tool; urban form;
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
doi https://doi.org/10.52842/conf.caadria.2018.1.205
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 134HOMELOGIN (you are user _anon_68844 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002