CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2556

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia18_216
id acadia18_216
authors Ahrens, Chandler; Chamberlain, Roger; Mitchell, Scott; Barnstorff, Adam
year 2018
title Catoptric Surface
doi https://doi.org/10.52842/conf.acadia.2018.216
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 216-225
summary The Catoptric Surface research project explores methods of reflecting daylight through a building envelope to form an image-based pattern of light on the interior environment. This research investigates the generation of atmospheric effects from daylighting projected onto architectural surfaces within a built environment in an attempt to amplify or reduce spatial perception. The mapping of variable organizations of light onto existing or new surfaces creates a condition where the perception of space does not rely on form alone. This condition creates a visual effect of a formless atmosphere and affects the way people use the space. Often the desired quantity and quality of daylight varies due to factors such as physiological differences due to age or the types of tasks people perform (Lechner 2009). Yet the dominant mode of thought toward the use of daylighting tends to promote a homogeneous environment, in that the resulting lighting level is the same throughout a space. This research project questions the desire for uniform lighting levels in favor of variegated and heterogeneous conditions. The main objective of this research is the production of a unique facade system that is capable of dynamically redirecting daylight to key locations deep within a building. Mirrors in a vertical array are individually adjusted via stepper motors in order to reflect more or less intense daylight into the interior space according to sun position and an image-based map. The image-based approach provides a way to specifically target lighting conditions, atmospheric effects, and the perception of space.
keywords full paper, non-production robotics, representation + perception, performance + simulation, building technologies
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id caadria2018_304
id caadria2018_304
authors Amtsberg, Felix and Raspall, Felix
year 2018
title Bamboo?
doi https://doi.org/10.52842/conf.caadria.2018.1.245
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 245-254
summary The presented paper discusses the combination of cutting edge technology (i.e. 3D-pinting) and raw natural grown resources (i.e. bamboo) to develop resource efficient load carrying truss structures in architectural scale. Via visual sensing the individual material properties of various bamboo poles are analyzed and directly used to inform the digital model. Comparing load carrying capacity of the bamboo pole and structural requirements of the design, the poles are placed and the connections designed. Conventional 3D-pinters produce the nodes and connectors and enable to merge natural and "digital" materiality.
keywords visual sensing; digital fabrication; material individuality; 3d-printing; bamboo
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_181
id caadria2018_181
authors Chun, Junho, Lee, Juhun and Park, Daekwon
year 2018
title TOPO-JOINT - Topology Optimization Framework for 3D-Printed Building Joints
doi https://doi.org/10.52842/conf.caadria.2018.1.205
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 1, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 205-214
summary Joints and connectors are often the most complex element in building assemblies and systems. To ensure the performance of the assemblies and systems, it is critical to optimize the geometry and configurations of the joints based on key functional requirements (e.g., stiffness and thermal exchange). The proposed research focuses on developing a multi-objective topology optimization framework that can be utilized to design highly customized joints and connections for building applications. The optimized joints that often resemble tree structures or bones are fabricated using additive manufacturing techniques. This framework is built upon the integration of high-fidelity topology optimization algorithms, additive manufacturing, computer simulations and parametric design. Case studies and numerical applications are presented to demonstrate the validity and effectiveness of the proposed optimization and additive manufacturing framework. Optimal joint designs from a variety of architectural and structural design considerations, such as stiffness, thermal exchange, and vibration are discussed to provide an insightful interpretation of these interrelationships and their impact on joint performance.
keywords Topology optimization; parametric design; 3d printing
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2018_403
id ecaade2018_403
authors Coraglia, Ugo Maria, Wurzer, Gabriel and Fioravanti, Antonio
year 2018
title ORe – A simulation model for Organising Refurbishments
doi https://doi.org/10.52842/conf.ecaade.2018.2.605
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 605-610
summary The problem of interferences due to the refurbishing activities of a complex building, carried out in parallel with the daily activities that characterize it, is not to be underestimated, especially when talking about a hospital structure. Consequently, the benefits that would be obtained by reducing the presence of construction activities result important in terms of safety and health of users, above all hospital patients. Setting the best solution of Gantt in the early stages of planning can be a winning strategy, as well as being able to recognize the safest and fastest path (e.g. predicting which is the fastest way to reach the rooms taken into consideration by the refurbishment). At the same time, being able to check which activities are most penalized by the presence of the construction site and to set which are essential for the survival of the activities that characterize the environment to be refurbished, e.g. the hospital ward, is a valid support tool for the healthcare staff. The proposed tool aims, on the one hand, to help designers by proposing the best possible Gantt solutions in relation to the management of daily activities that can not be suspended and on the other hand to support healthcare staff in the organization of these latter.
keywords Refurbishment; Complex building; Construction site; Space syntax; Bubble diagram; Gantt
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2018_1387
id sigradi2018_1387
authors Coraglia, Ugo Maria; Wurzer, Gabriel; Fioravanti, Antonio
year 2018
title Noise Solver for Refurbishment Construction Site Design
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 517-522
summary The noise generated by the presence of a construction site within complex structure in operation (e.g. school, hospital) is a problem that too often is underestimated but that can generate problems of different nature, both concerning the health of the actors involved and regarding the performance of daily activities present within such structures (e.g. carrying out a lesson, a surgical procedure). The main aim of our tool is to highlight the impact of the noise generated by the construction site activities on these daily activities and to allow the simulation in real time of the viable solutions, thus arriving to find the one that is considered most suitable.
keywords Hospital refurbishment; Construction site design; Noise reduction; Simulation
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia21_444
id acadia21_444
authors Crawford, Assia
year 2021
title Mitochondrial Matrix
doi https://doi.org/10.52842/conf.acadia.2021.444
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 444-453.
summary The following project was created as part of an art residency with the Wellcome Centre for Mitochondrial Research (WCMR) at Newcastle University. The WCMR specializes in leading-edge research into mitochondrial disease, investigating causes, treatments, and ways of avoiding hereditary transmission. Mitochondria is believed to have started off as a separate species that through symbiosis came to be the powerhouse of each cell in our bodies (Hird 2009). Mitochondrial disease is a genetic disorder that is caused by genetic mutations of the DNA of the mitochondria or the cell that in turn affects the mitochondria (Bolano 2018). Mitochondria is a hereditary condition and can affect people at different stages in their lives. It can affect various organs and has a link to various types of conditions. Therefore, the patient experience is unique to each individual and the elusive nature of the condition can make it particularly challenging due to the complexity of the disorder as well as the inaccessible scale on which these variations occur (Chinnery 2014)
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id sigradi2018_1744
id sigradi2018_1744
authors de Toledo e Gazel, Jorge Lira; Carmo Pena Martinez, Andressa; dos Santos, Denise Mônaco; Lopes de Souza, Douglas
year 2018
title 2 BITS: A case of mass customization for social housing
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 353-358
summary This work presents a design for mass customization of modular housing applied to the Brazilian case, through modeling in grasshopper. These parametric tools contribute to an increase in the flexibility of the decisions and allow the execution, generating a wide range of solutions for the same problem. As a case study, it was considered the environmental disaster which occurred in the city of Mariana, whose homeless population remains displaced. Although in the initial phase of studies, this modular housing model aims to discuss principles of variability, flexibility, and pre-fabrication, delegating more decisions to end-users of large-scale social housing.
keywords mass customization; parametric design; social housing
series SIGRADI
email
last changed 2021/03/28 19:58

_id sigradi2018_1248
id sigradi2018_1248
authors Eloy, Sara; Dias, Maria Ângela; Vermaas, Pieter E
year 2018
title User-centered shape grammars for housing transformations: towards post-handover grammars
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 156-164
summary This paper presents a post-handover shape grammar for introducing inhabitants wishes in the transformation of individual houses of the Malagueira housing complex by Álvaro Siza Vieira in Évora, Portugal. The presented research includes a case study developed in the context of the workshop Gramática da Forma em estudos de habitação - análise, geração e customização at the Universidade Federal do Rio de Janeiro, Brazil. In this paper we present the first developments of the Malagueira transformation grammar, including corpus of analysis, shape rules, and derivations, and we discuss the opportunities that shape grammar brings to user-centered design.
keywords Housing; Participatory design; Shape grammar; Transformation; Inhabitants
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_197
id ecaade2018_197
authors Fuchkina, Ekaterina, Schneider, Sven, Bertel, Sven and Osintseva, Iuliia
year 2018
title Design Space Exploration Framework - A modular approach to flexibly explore large sets of design variants of parametric models within a single environment
doi https://doi.org/10.52842/conf.ecaade.2018.2.367
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 367-376
summary Parametric modelling allows to relatively easily generate large sets of design variants (so called design space). Typically, a designer intuitively moves through this design space, resulting in one or several satisfying solutions. Due to the theoretically large number of variants that can be created with parametric models, obviously, there is a high probability that potentially good solutions could be missed, which is not at least because of human cognitive limitations. Consequently, it is necessary to develop a certain strategy to support designers in order to search for design solutions. Even though, various methods to systematically approach large data sets exist, the application of them in the design process is a special case, firstly, due to the existence of many non-specifiable and subjective dimensions (e.g. aesthetics) and secondly because of the multiple ways how designers actually search for solutions. This demands for a more flexible approach to design space exploration. This paper investigates how different methods can be combined to support the exploration of design spaces. Therefore, a conceptual framework with a modular architecture is proposed and its prototypical implementation is demonstrated.
keywords Design Space Exploration; Parametric design
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2018_141
id ecaade2018_141
authors Hermund, Anders, Klint, Lars Simon, Bundgaard, Ture Slot and Noël Meedom Meldgaard Bj?rnson-Langen, Rune
year 2018
title The Perception of Architectural Space in Reality, in Virtual Reality, and through Plan and Section Drawings - A case study of the perception of architectural atmosphere
doi https://doi.org/10.52842/conf.ecaade.2018.2.735
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 735-744
summary This paper presents the findings from a comparative study of an architectural space communicated as the space itself and its two different representations, i.e. a virtual reality model and traditional plan and section drawings. Using eye tracking technology in combination with qualitative questionnaires, a case study of an architectural space is investigated in physical reality, a virtual reality 3D BIM model, and finally through representation of the space in plan and section drawings. In this study, the virtual reality scenario seems closer to reality than the experience of the same space experienced through plan and section drawings. There is an overall higher correlation of both the conscious reflections and the less conscious behaviour between the real physical architectural space and the virtual reality space, than there is between the real space and the space communicated through plan and section drawings. We can conclude that the scenario with the best overall size estimations, compared to the actual measures, is the virtual reality scenario. The paper further discusses the future applications of virtual reality in architecture.
keywords Architectural representation; Virtual Reality; Perception; Tradition
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2018_280
id ecaade2018_280
authors Herthogs, Pieter, Tunçer, Bige, Schläpfer, Markus and He, Peijun
year 2018
title A Weighted Graph Model to Estimate People's Presence in Public Space - The Visit Potential Model
doi https://doi.org/10.52842/conf.ecaade.2018.2.611
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 611-620
summary In this paper, we introduce the Visit Potential Model (VPM), an integrated model to evaluate public space characteristics. It is an initial attempt to model and predict the potential presence of people in public places (i.e. their Visit Potential); the presence and flux of people being the underlying driver of all public space. We achieved this by combining a proposed universal law of visit frequencies in cities with a gravity measure for accessibility. We also demonstrate how this model can be extended to represent public space quality and liveliness throughout the hours of the day - a crucial concept in public space design. The paper primarily discusses the development of the calculation model, describing three variants to calculate Visit Potential values for public spaces: based on a public space's accessibility to people, the potential number of people visiting attractors, and the number of people moving through and occupying a public space.
keywords public space quality; liveliness; weighted graphs; accessibility; walkability
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2018_158
id caadria2018_158
authors Koh, Immanuel
year 2018
title Learning Design Trends from Social Networks - Data Mining, Analysis & Visualization of Grasshopper® Online User Community
doi https://doi.org/10.52842/conf.caadria.2018.2.277
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 277-286
summary The paper has demonstrated that the increasingly online relationship between designers and their digital tools can be quantitatively represented, described and analyzed through the data-mining of design-domain specific and tool-based social network (i.e. Grasshopper3D). It explores design trends' correlations based on network user groups' size, users' demographics, nodes' degree centrality and discussion threads' popularity.
keywords Social Networks; Design Trends; Big Data; Parametric Design Tools; Data Visualization
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaaderis2018_110
id ecaaderis2018_110
authors Kyprianou, Stefanos, Polyviou, Pavlos, Tsaggari, Marianna and Phocas, Marios C.
year 2018
title Tall Tensegrities - A Parametric Deformation Control Analysis
source Odysseas Kontovourkis (ed.), Sustainable Computational Workflows [6th eCAADe Regional International Workshop Proceedings / ISBN 9789491207143], Department of Architecture, University of Cyprus, Nicosia, Cyprus, 24-25 May 2018, pp. 87-94
keywords The design of tall structures with high slenderness, i.e. width/height ratio, and minimum self-weight, considers in addition to aspects of modularity, constructability and connectivity of the primary members, the static and dynamic behavior of the systems. Assuming constant mass and damping ratio over the height of the building, the structure necessitates respective definition of its stiffness properties, resulting from its configuration, i.e. geometrical stiffness, and the section properties of the members applied, for achieving controlled deformations under horizontal loading. In particular, structural deformation control is traced in the current paper in simplified means through a Finite-Element Analysis of a tall tensegrity structure with overall system dimensions of 12.12/96 m, i.e. 1/7.92 slenderness, developed in three different configurations. Furthermore, a differentiated pretension of the tension-only members of one of the systems has been applied for control of its response behavior. The parametric structural analysis of the tensegrity systems verifies the significant role of the tension-only elements in the system stabilization and horizontal response.
series eCAADe
email
last changed 2018/05/29 14:33

_id sigradi2018_1405
id sigradi2018_1405
authors Massara Rocha, Bruno; Santo Athié, Katherine
year 2018
title Emerging senses from Smart Cities phenomenon
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 434-441
summary The paper analyses the emerging senses from the Smart Cities phenomenon, using as background Lemos (2017), Maia (2013), Rozestraten (2016), Söderström, Paache & Klauser (2014) and evaluating the speeches found in the SmartCity Expo Curitiba. We identified three basic senses: the binary utopia/ficcion, business and informational city, discussed by philosophers such as Foucault (2017), Lévy (2011) e Harvey (2014). The results outline the importance of political role of technology and adverts that it must not be controlled by business. Finally, the paper concludes that the smartest technology is one that opens space to the inclusion of greater human expressivity and subjectivity, not inducing a space of control.
keywords Smart cities; Digital technologies; Technopolitics;
series SIGRADI
email
last changed 2021/03/28 19:58

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2018_220
id ecaade2018_220
authors Moralioglu, Begum
year 2018
title Spatial User Interfaces in Mixed Reality - Online Shopping Experience Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.753
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 753-760
summary The purpose of this study is to determine the parameters of the best possible spatial user interface design for the online shopping experience in mixed reality. In the first phase of the study, ten existing augmented and virtual reality shopping applications are examined, and the spatial relationships of the interfaces used in these experiences and the possibilities of natural interactions provided to the user are compared. In the next phase of the study, the interfaces are evaluated to propose a three-dimensional spatial interface powered by the mixed reality that improves the spatial relationship and neutrality of these interfaces.
keywords Mixed Reality; E-commerce; Spatial Interfaces; 3D User Interfaces; HoloLens; Natural Interfaces
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2018_1269
id sigradi2018_1269
authors Noronha Pinto de Oliveira e Sousa, Marcela; Caffarena Celani, Maria Gabriela
year 2018
title Towards Urban Densification: Parametric Modeling of Possible Scenarios for Urban Mobility
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 415-422
summary This article presents a literature review on the relationship between urban design and travel demand, and systematically maps existing studies in generative, parametric and procedural urban modeling that have approached the subject. The methods used in these papers are discussed, and the computational tools described in them are analyzed to identify how they can be used to support the design process for retrofitting urban streets. The findings are used to identify what further developments are needed in order to allow for visualizing the impact of design decisions on modal share.
keywords Urban design; Parametric urbanism; Travel behavior; Built environment
series SIGRADI
email
last changed 2021/03/28 19:59

_id ijac201816403
id ijac201816403
authors Pantazis, Evangelos and David Gerber
year 2018
title A framework for generating and evaluating façade designs using a multi-agent system approach
source International Journal of Architectural Computing vol. 16 - no. 4, 248-270
summary Digital design paradigms in architecture have been rooted in representational models which are geometry centered and therefore fail to capture building complexity holistically. Due to a lack of computational design methodologies, existing digital design workflows do little in predicting design performance in the early design stage and in most cases analysis and design optimization are done after a design is fixed. This work proposes a new computational design methodology, intended for use in the area of conceptual design of building design. The proposed methodology is implemented into a multi-agent system design toolkit which facilitates the generation of design alternatives using stochastic algorithms and their evaluation using multiple environmental performance metrics. The method allows the user to probabilistically explore the solution space by modeling the design parameters’ architectural design components (i.e. façade panel) into modular programming blocks (agents) which interact in a bottom-up fashion. Different problem requirements (i.e. level of daylight inside a space, openings) described into agents’ behavior allow for the coupling of data from different engineering fields (environmental design, structural design) into the a priori formation of architectural geometry. In the presented design experiment, a façade panel is modeled into an agent-based fashion and the multi-agent system toolkit is used to generate and evolve alternative façade panel configurations based on environmental parameters (daylight, energy consumption). The designer can develop the façade panel geometry, design behaviors, and performance criteria to evaluate the design alternatives. The toolkit relies on modular and functionally specific programming modules (agents), which provide a platform for façade design exploration by combining existing three-dimensional modeling and analysis software.
keywords Generative design, multi-agent systems, façade design, agent-based modeling, stochastic search
series journal
email
last changed 2019/08/07 14:04

_id caadria2018_097
id caadria2018_097
authors Park, Daekwon
year 2018
title Adaptive THERM-SKIN - Tunable Cellular Materials for Adaptive Thermal Control
doi https://doi.org/10.52842/conf.caadria.2018.2.309
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 309-318
summary This research investigates a tunable cellular material system that can alternate between a thermal insulator and a heat exchanger. The capability to morph between these two distinctive thermal functions provide opportunities to create novel material systems that can dynamically adapt to its environment. The operating principle is to strategically deform the cellular material so that the shape and size of the cavities are optimized for the intended thermal function. In the compressed state, the cavity spaces are narrow enough to suppress convection heat transfer and utilize the low thermal conductivity property of still air. The expanded state has the optimum cavity dimensions for air to move through the system and exchange heat with the material system. The first stage of the research utilizes the existing thermal optimization studies for establishing the analytical model for predicting the performance of each state as a function of the geometric features. The second stage constructs a parametric model using the predictions, and two separate material architectures were designed and fabricated based on it. The calibrated analytical model can be utilized in designing various dynamic thermal interaction systems at a wide range of conditions and parameters (e.g., climate, temperature, scale, and material).
keywords Dynamic Thermal Insulation; Cellular Materials; Thermal Design and Optimization; Adaptive Materials
series CAADRIA
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 127HOMELOGIN (you are user _anon_31186 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002