CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 10976

_id caadria2015_208
id caadria2015_208
authors Sharif, Shani and T. Russell Gentry
year 2015
title Design Cognition Shift from Craftsman to Digital Maker
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 683-692
doi https://doi.org/10.52842/conf.caadria.2015.683
summary The process of design and fabrication involves a complex cognitive activity, in which the human brain is part of a larger cognitive system that encompasses brain, body, tool, material and environment. In this system the cognition resides in the interaction of all these elements one with another in different stages of a design and making activity. This paper investigates the intermediary role of digital fabrication machines in changing the discourse of design cognition in relation to the action of making, inquiring into the diverging path from traditional craftwork. This research is shaped around the concept of transparent machine tools for an interactive participation in the process of design-making, shaping a human-machine interaction to unify the design and fabrication process.
keywords Digital fabrication; crafts; design cognition; distributed cognition; embodiment.
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2012_187
id sigradi2012_187
authors Sharif, Shani; Gentry, T Russell; Yen, Jeannette; Goodman, Jose N
year 2012
title Kinetic Solar Panels: A Transformative and Expandable Geometric System for Photovoltaic Structures
source SIGraDi 2012 [Proceedings of the 16th Iberoamerican Congress of Digital Graphics] Brasil - Fortaleza 13-16 November 2012, pp. 649-652
summary This paper focuses on the applications of geometrically transformable and expandable structures with deployed “energy production mode and retracted “wind shedding” mode to replace the fixed photovoltaic (PV) panels and racking systems currently used in buildings rooftop installations. The significance of this expandable geometric system relies on its embedded motion grammar, i.e. rotation and translation transformations, in the system. The research draws inspiration from reconfiguration of compound tree leaves in nature, and addresses issues of redesign and modeling challenges that led to digital fabrication of the prototype.
keywords Kinetic system, photovoltaic panels, geometric transformation, motion grammar, parametric modeling
series SIGRADI
email
last changed 2016/03/10 10:00

_id ijac201310205
id ijac201310205
authors Sharif, Shani; T. Russell Gentry, Jeannette Yen, Joseph N. Goodman
year 2013
title Transformative Solar Panels: A Multidisciplinary Approach
source International Journal of Architectural Computing vol. 11 - no. 2, 227-246
summary This paper focuses on the applications of geometrically transformable and expandable structures with deployed "energy production" mode and retracted "wind shedding" mode to replace the fixed photovoltaic (PV) panels and racking systems currently used in buildings rooftop installations. The significance of this expandable geometric system relies on its embedded motion grammar, i.e. rotation and translation transformations, in the system. The research draws inspiration from reconfiguration of compound tree leaves in nature, and addresses issues of redesign and modeling challenges that led to digital fabrication of the prototype. Finally, the research studies the development of a multidisciplinary research from the distributed cognition point of view, and emphasizes on the role of an iterative creation, sharing and reflection method for the development of a common ground for a successful collaboration.
series journal
last changed 2019/05/24 09:55

_id ascaad2006_paper2
id ascaad2006_paper2
authors Sharji, Elyna and Ahmed Rafi
year 2006
title The Significant Role of an Electronic Gallery to the Education Experience and Learning Environment
source Computing in Architecture / Re-Thinking the Discourse: The Second International Conference of the Arab Society for Computer Aided Architectural Design (ASCAAD 2006), 25-27 April 2006, Sharjah, United Arab Emirates
summary Multimedia has brought new paradigms to education where users are able to use the technology to create compelling content that truly represents a new archetype in media experience. According to Burger (1995), the synergy of digital media is becoming a way of life where new paradigms for interactive audio-visual experiences of all communicative arts to date are mandatory. It potentially mixes technology and disciplines of architecture and art. Students can learn on their own pace and they can be tested in a non-linear way while interactivity allows the curious to easily explore related topics and concepts. Fundamental assumptions, theories and practices of conventional design paradigm are constantly being challenged by digital technology and this is the current scenario in architecture and art and design schools globally. Thus schools are enhancing the methods and improvising the technology of imparting knowledge to be in consistent with recent findings and knowledge. To be able to cater the use of digital media and information technology on architectural and art design education, four criteria are required, which are; the SPACE and place to accommodate the educational activities, the TOOLS that assist imparting of knowledge, the CONTENT of syllabus and information and the acceptance and culture of the receiving end users and HUMAN PERCEPTION. There is a need for the research of realization and activating the architectural space that has been equipped with multimedia tools and upgraded with recent technology to facilitate and support the community of learners and users. Spaces are now more interactive, multi functional, flexible and intelligent to suit the trend of computing in normal everyday life of the education sector, business and management, art and leisure, corporate and technological area. While the new concept of computing in education is still in the earlier phase, the conventional analogue paradigm still dominates the architectural design discourse which acts as a barrier to the development of digital designs and architectural education. A suitable approach is in need to bridge the gap between what theory has been explored and the practice of knowledge. A digital support environment with intelligent design and planning tools is envisioned to bridge the gap and to cater for the current scenario.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:34

_id ascaad2010_271
id ascaad2010_271
authors Sharkasi, Nour; Ramzi Hassan and Caroline M. Hagerhal
year 2010
title Presence in Virtual Cave
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 271-278
summary Virtual Reality (VR) is usually recognized as a tool that enables the viewer to move freely in a three dimensional digital environment. In this virtual world, different levels of immersion could be reached. Using VR to visualize sites and places from the past, presents and future is widely acknowledged. This study is making use of a recently installed U-Cave theatre at Birzeit University (BZU) in Palestine and a Con-Cave VR theatre at the Norwegian University of Life Sciences (UMB).In the study, we test hypotheses connected to presence in virtual reality environments, using the case of historical sites. Historical sites in general are important for reasons of cultural identification and environmental integrity. In many historical sites, it is difficult for a layperson to read and understand the meaning of the site, for that the remaining ruins don’t provide enough information. This study will contribute to improving the public understanding for historical sites by unfolding the role of Virtual Reality to overcome the harsh reality of many damaged historical sites. The story-line of the site can be easily portrayed by re-constructing the original site in a virtual environment. The study also elaborates on the enriched sense of presence made possible by implementing different levels of details in the VR environment. Presence in VR environments is usually defined as “being there”, with high consideration of the physical ether of the virtual environment, the definition confines attention to the sensation of place. This study calls for expanding the attention to the dimension of time that is made possible by innovative design of VR environment. The study argues that virtual reality technology does not only provide a 3-D experience to subjects, it can also add a fourth dimension by conveying the unconsciousness of man from the meanwhile moment to a different timeframe. Based on the current knowledge on presence in virtual environments, we will use a questionnaire to measure subjective presence for the two VR theatre systems. The study will make use of the following factors in order to determine the degree of presence in the virtual environment: (1) naturalness of interface design and involvement, (2) control and interaction, (3) quality of technical capabilities, and (4) negative effects. The outcome of the study will verify or falsify some of the following hypotheses: • There is a correlation between modeling techniques and presence. The perception of the visual experience differs between traditional media and an immersive VR environment. • A presentation of a historical site in a VR-Cave environment will increase our subject’s awareness of the identity of the historical site. • The presence level is correlated to previous real exposure. Subjects who had been to a ruined historical site in real life, would experience higher level of presence toward the VR presentation than those who had not been to the historical site in reality. • Because of the display enclosure surround effect, it is believed that presence in a Con-Cave would be higher than of U-Cave VR environment.
series ASCAAD
type normal paper
email
last changed 2011/03/01 07:47

_id ddss2008-46
id ddss2008-46
authors Sharma, Shrikant B. and Vincent Tabak
year 2008
title Rapid Agent Based Simulation of People Flow forDesign of SpacesAnalysis, Design and Optimisation
source H.J.P. Timmermans, B. de Vries (eds.) 2008, Design & Decision Support Systems in Architecture and Urban Planning, ISBN 978-90-6814-173-3, University of Technology Eindhoven, published on CD
summary This paper presents a novel static-dynamic network based people flow simulation model applied to design optimisation of circulation spaces within buildings and urban areas. In the current state of art the majority of existing people flow simulation models are driven by analysis rather than design. This is fine for simpler, evacuation type scenarios where a single or a few analyses runs are sufficient to determine the evacuation time. For more complex scenarios such as crowd circulation with complex multi-directional flow, one is as interested in the sensitivity of various design and stochastic behavioural parameters, so the rapid modelling simulations together with design capability become important. This paper presents a simplified network based people flow model that enables rapid simulations and therefore iterative design optimization of circulation space. The work integrates the techniques of graph-theory based network analysis with an origin-destination matrix model of crowd flow, to provide a rapid, parametric model. The resulting model can be analysed in a static as well as dynamic state. In the static state, the model analyses space based on connectivity of nodes, superimposed with the origin-destination matrix of population to provide valuable information such as footfalls, density maps, as well as quasi-static parameters such as mean flow rates. In the dynamic state, the model allows time-dependent analysis of flow using a detailed agent based simulation that also incorporates dynamic route-choice modelling, agent behaviours and interaction, and stochastic variations. The paper presents the integrated modelling technique and its implementation into simulation software SMART Move.
keywords People Flow, Pedestrian, Agent Based Simulation, Evacuation, Network, Optimisation
series DDSS
last changed 2008/09/01 17:06

_id acadia16_254
id acadia16_254
authors Sharmin, Shahida; Ahlquist, Sean
year 2016
title Knit Architecture: Exploration of Hybrid Textile Composites Through the Activation of Integrated Material Behavior
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 254-259
doi https://doi.org/10.52842/conf.acadia.2016.254
summary The hybrid system in textile composites refers to the structural logic defined by Heino Engel, which describes a system that integrates multiple structural behaviors to achieve an equilibrium state (Engel 2007). This research explores a material system that can demonstrate a hybrid material behavior defined by the differentiated tensile and bending-active forces in a single, seamless knitted composite material. These behaviors were installed during the materialization phase and activated during the composite formation process. Here, the material formation involves two interdependent processes: 1) development of the knitted textile with integrated tensile and reinforced materials and 2) development of the composite by applying pre-stress and vacuuming the localized area with reinforcements in a consistent resin-based matrix. The flat bed industrial weft knitting machine has been utilized to develop the knitted textile component of the system with a controlled knit structure. This enables us to control the material types, densities, and cross sections with integrated multiple layers/ribs and thus, the performance of the textile at the scale of fiber structure. Both of these aspects were researched in parallel, using physical and computational methods informed and shaped by the potentials and constraints of each other. A series of studies has been utilized to develop small-scale prototypes that depict the potential of the hybrid textile composite as the generator of complex form and bending active structures. Ultimately, it indicates the possibilities of hybrid textile composite materials as self-structuring lightweight components that can perform as highly articulated and differentiated seamless architectural elements that are capable of transforming the perception of light, space, and touch.
keywords form-finding, programmable materials, composite forming processes, embedded responsiveness
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id ecaade2021_133
id ecaade2021_133
authors Sharp, Alexa, Blay, Georgina, Kholodova, Janna and Correa, David
year 2021
title An Autonomous Bio-Inspired Shading Façade System based on Plant Movement Principles
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 463-472
doi https://doi.org/10.52842/conf.ecaade.2021.2.463
summary Utilizing existing principles of plant movement, we can design climatic-responsive facades made of hygroscopic materials. This paper investigates the use of a double actuating system to create an architectural façade. Several adaptive façade strategies have been previously developed using wood bilayers, but there has not been significant investigation into the application of multiple actuation points in a single unit. The paper presents a façade that is responsive to the surrounding environment via the kinematic amplification of hygroscopic wood expansion. The kinematic amplification uses the biomechanical principles from both the Water Lily (Nymphaea) and the Purple Shamrock (Oxalis triangularis). Acting as an adaptive shading mechanism, the façade system - arranged using Lindenmayer system principles - can improve occupant comfort by controlling solar radiation . The developed prototypes use climate-responsive wood bilayer actuators. The aesthetic and functional features of the bio-inspired mechanism promote a visual awareness between our built environment and environmental conditions.
keywords Adaptive Façade; Biomimetics; Plant Movement; Responsive Architecture; Hygroscopic; Stimulus-Responsive Materials
series eCAADe
email
last changed 2022/06/07 07:56

_id 301a
authors Sharpe, J.E.
year 1995
title Computer tools for integrated conceptual design
source Design Studies 16 (4) (1995) pp. 471-488
summary This paper outlines the conceptual design process with reference to the integrated computer-aided design tool known as Schemebuilder, and the related work of the Lancaster University Engineering Design Centre. The aim of the Lancaster EDC is to provide highly integrated support for the rapid creation and evaluation of a wide range of outline design schemes. Particular attention is paid to the design of mechatronic systems and devices.
series journal paper
last changed 2003/05/15 21:45

_id cfcd
authors Shaviv, E.
year 1999
title Integrating energy consciousness in the design process
source Automation in Construction 8 (4) (1999) pp. 463-472
summary The design process for an intelligent, energy conscious building which was built, along with the design tools that were applied, is presented. The building, situated in the hot–humid climate of Rehovot, Israel, houses the laboratories and offices of the Weizmann Institute's Environmental Science and Energy Research Department. Alternative bio-climatic design options were proposed and evaluated throughout the detailed design stage. A building energy performance index (BEPI) was established for each alternative. This index reflects the total amount of energy consumption for heating, cooling, ventilating and lighting used per square meter of floor area. Thermal modeling for the different design alternatives were carried out by means of an hourly dynamic simulation model. The model solves simultaneously the heat transfer equations through all exterior walls, taking into account the thermal mass of each external wall as well as internal partitions. The model was extended to include hourly calculations of daylighting and geometrical shading coefficient of the windows, as well as automated and `smart' control strategies.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 8245
authors Shaviv, Edna and Greenberg, Donald P.
year 1968
title Funicular Surface Structures: a Computer Graphics Approach
source Bulletin of the International Association for Shell Structures. Madrid, Spain: 1968. pp. 15-26 : ill. includes some bibliographical notes
summary This paper describes the problem of finding the shape of the middle surface of a shell when the loading and the stress resultants distributions are known. Differential equations are set up and solved using the finite difference technique. Several solutions are presented by means of an electronic computer and a plotter
keywords curved surfaces, structures, synthesis, architecture, computer graphics, algorithms
series CADline
email
last changed 2003/06/02 13:58

_id eaff
authors Shaviv, Edna and Kalay, Yehuda E.
year 1992
title Combined Procedural and Heuristic Method to Energy Conscious Building Design and Evaluation
source New York: John Wiley & Sons, 1992. pp. 305-325 : ill. includes bibliography
summary This paper describes a methodology that combines both procedural and heuristic methods by means of integrating a simulation model with a knowledge based system (KBS) for supporting all phases of energy conscious design and evaluation. The methodology is based on partitioning the design process into discrete phases and identifying the informational characteristics of each phase, as far as energy conscious design is concerned. These informational characteristics are expressed in the form of design variables (parameters) and the relationships between them. The expected energy performance of a design alternative is evaluated by a combination of heuristic and procedural methods, and the context-sensitive application of default values, when necessary. By virtue of combining knowledge based evaluations with procedural ones, this methodology allows for testing the applicability of heuristic rules in non-standard cases,Ô h)0*0*0*°° ÔŒ thereby improving the predictable powers of the evaluation
keywords design process, evaluation, energy, analysis, synthesis, integration, architecture, knowledge base, heuristics, simulation
series CADline
email
last changed 2003/06/02 10:24

_id c06a
authors Shaviv, Edna
year 1978
title The Determination of the Form of Windows and Sunshades in a Hot Climate - A Case Study
source CAD 78 proceedings. 1978. IPC Science & Tech. Press, pp. 11-120 : ill. and tables. includes bibliography: pp. 115
summary Architectural Sciences and Design Methods Working Paper ASDM- 13 A method for the design of fixed external sunshades was developed, using a computer for calculating the exact geometry and a plotter for presentation. The method is applied to the design of the elevations of a hospital building under construction in Haifa, Israel. The emphasis is on finding the form of the correct shape of windows and the necessary sunshades so as to avoid penetration of direct sun during the summer. The method preserves the freedom of the architect and provides reasonable structures and pleasing elevations
keywords architecture, shading, energy, evaluation, synthesis, analysis, methods, tools, algorithms, applications
series CADline
email
last changed 2003/05/17 10:20

_id 29c6
authors Shaw, N. and Kimber, W.E.
year 1999
title STEP and SGML/XML: what it means, how it works
source XML Europe ‘99 Conference Proceedings, Graphic Communication Association, 1999, pp. 267-70
summary The STEP standard, ISO 10303, is the primary standard for data representation and interchange in the product design and manufacturing world. Originally designed to enable the interchange of 3-D CAD models between different systems, like SGML, it has defined and uses a general mechanism for representing and managing complex data of any type. Increasingly products are defined as solid models that are stored in product databases. These databases are not limited to shape but contain a considerable wealth of other information, such as materials, failure modes, task descriptions, product related meta-data such as approvals and much more. The product world is of course also replete with documents, from requirements through specifications to user manuals. These documents both act as input to the product development processes and are output as well. Indeed in some cases documents form part of the product and are given part numbers. It is therefore not surprising to find that there are many companies where there are very real requirements to interact and interoperate between the product data and documents, specifically in the form of SGML-based data. This paper reports on work in progress to bring the two worlds together. This is primarily being done through the SGML and Industrial Data Preliminary Work Item under ISO TC184/SC4. The need for common capabilities for using STEP and SGML together has been obvious for a long time as can be seen from the inclusion of product data and SGML-based data within initiatives such as CALS. However, until recently, this requirement was never satisfied, for various reasons. For the last year or more, a small group has been actively pursuing this area and gaining the necessary understandings across the different standards. It is this work that is reported here. The basic thrust of the work is to answer the questions: Can STEP and SGML be used together and, if so, how?
series other
last changed 2003/04/23 15:50

_id cdc8
authors Shea, K. and Cagan, J.
year 1999
title The design of novel roof trusses with shape annealing: assessing the ability of a computational method in aiding structural designers with varying design intent
source Design Studies 20 (1) (1999) pp. 3-23
summary A study of roof truss designs conceived by architects and civil engineers as well as those generated with shape annealing, a computational design method for structural configuration, is presented. The purpose of this study is to assess the capabilities of shape annealing in (1) meeting the needs of designers with varying intent, and (2) presenting spatially intriguing, yet functional, structures that expand the range of designs considered in the conceptual design stage. An advantage of shape annealing for conceptual design is unbiased, directed exploration of the design space. The conclusion of this study is that shape annealing generates alternatives that appeal to designers with different purposes while providing insight into relations between structural form and function.
series journal paper
last changed 2003/05/15 21:45

_id ecaade03_553_149_shea
id ecaade03_553_149_shea
authors Shea, K., Aish, R. and Gourtovaia, M.
year 2003
title Towards Integrated Performance-Based Generative Design Tools
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 553-560
doi https://doi.org/10.52842/conf.ecaade.2003.553
summary Generative design methods are capable of generating concepts and stimulating solutions based on robust and rigorous models of design conditions, design languages and design performance. The computer now becomes a design generator in addition to its more conventional role as draftsperson, visualizor, data checker and performance analyst. Motivated by the challenge to enable designers to easily develop meaningful input models of design intent to make best use of a structural generative method, this paper describes an initial combination of a generative design tool, eifForm, and an associative modeling system, Custom Objects, through the use of XML models. The current combined use is illustrated through an example involving generation of a set of 20 interrelated roof trusses with seven unique spans initiated by a parametric model of a saddle shaped stadium roof in Custom Objects. The paper concludes with a discussion of the synergies between associative modeling and generative systems and identifies future extensions aimed to exploit these synergies towards integrated performance-based generative design tools.
keywords Generative design, parametric/associative geometry, advanced CAD tools,performance-based design, computational design
series eCAADe
email
more http://www-edc.eng.cam.ac.uk/designsynthesis
last changed 2022/06/07 07:56

_id 3fce
authors Shedroff, Nathan
year 2000
title Information Interaction Design: A Unified Field Theory of Design
source Jacobson, R., (ed.). Information Design pp. 267-293. Cambridge: MIT Press
summary One of the most important skills for almost everyone to have in the next decade and beyond will be those that allow us to create valuable, compelling, and empowering information and experiences for others. To do this, we must learn existing ways of organizing and presenting data and information and develop new ones. Whether our communication tools are traditional print products, electronic products, broadcast programming, interactive experiences, or live performances makes little difference. Nor does it matter if we are employing physical or electronic devices or our own bodies and voices. The process of creating is roughly the same in any medium. The processes involved in solving problems, responding to audiences, and communicating to others are similar enough to consider them identical for the purposes of this paper. These issues apply across all types of media and experiences, because they directly address the phenomena of information overload, information anxiety, media literacy, media immersion, and technological overload-all which need better solutions. The intersection of these issues can be addressed by the process of Information Interaction Design. In other circles, it is called simply Information Design, Information Architecture, or Interaction Design, Instructional Design, or just plain Common Sense. Many people create or engineer interactions, presentations, and experiences for others. Almost all interactions- whether part of a book, a directory, a catalog, a newspaper, or a television program-can be created or addressed by one process. This process can be used to produce every CD-ROM, kiosk, presentation, game, and online service. It can also be used for every dance, music, comedy, or theater performance. While the traditions and technologies may change with every discipline, the process does not.
series other
last changed 2003/04/23 15:50

_id caadria2021_400
id caadria2021_400
authors Sheehan, Liam Jordan, Brown, Andre, Schnabel, Marc Aurel and Moleta, Tane
year 2021
title The Fourth Virtual Dimension - Stimulating the Human Senses to Create Virtual Atmospheric Qualities
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.2021.2.213
summary In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human bodys sensory ability to detect temperature changes: thermoception. Currently, users perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaas theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core five senses, have in creating a fourth virtual dimension. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the bodys thermoception sense.
keywords Virtual Reality; thermoception; sensory experience; immersion; atmosphere
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2017_118
id ecaade2017_118
authors Shehu, Mateos and Yunitsyna, Anna
year 2017
title Generative computational tools for the design of Urban Morphology
source Fioravanti, A, Cursi, S, Elahmar, S, Gargaro, S, Loffreda, G, Novembri, G, Trento, A (eds.), ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1, Sapienza University of Rome, Rome, Italy, 20-22 September 2017, pp. 477-482
doi https://doi.org/10.52842/conf.ecaade.2017.1.477
summary Today more than 50% of the population is located in cities. This is an essential need, considering the facilities that urban life offers in contrast to the rural one. But, despite the benefits this migration brings to the individuals, it is also associated with some degree of unpredicted behavior which harms the community. In the recent years Albania, like most developing countries, has been facing problems with both informality and the inability to come up with concrete design solutions to adapt quick changes. From this perspective, this paper illustrates a research done to encompass new tools in the urban design practice of Albania for the overcoming of the current design difficulties.It describes a new approach to assess the problematics in the city of Tirana, and implement an algorithmic procedure which creates urban design proposals similar but not limited to the existing ones. Together with other evaluation tools, these new proposals can be tested in terms of energy efficiency, solar access and ventilation performance with the ultimate goal of creating a unified work model which not only will speed up the process but also improve its overall design efficiency.
keywords Parametric Urbanism; Urban Morphology; Sustainability
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2023_215
id ecaade2023_215
authors Sheikh, Abdullah and Crolla, Kristof
year 2023
title Architectural Education with Virtual Reality
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 159–168
doi https://doi.org/10.52842/conf.ecaade.2023.1.159
summary This paper discusses educational and technical knowledge extracted from the development and implementation of teaching material for an elective course offered to both undergraduate and graduate students at The University of Hong Kong, which aimed to increase technical proficiency with Virtual Reality (VR) tools in Architecture design and education. VR is relatively underused and under-implemented in architectural education and practice due to the broad and diverse number of technical solutions available. Lack of open software workflows in this field limits ways in which designers can visualise models in a VR experience and evaluate their work at a 1:1 scale. The elective course aimed to address this, creating designer-specific workflows along with a larger overview of technical solutions available. Knowledge disseminated through guided exercises led to the introduction of options for independent student-driven research into VR-driven digital design projects. Technical knowledge was therefore transferred through integrated digital interaction embodied into the design process. Unreal Engine (5.03) was used as the main development environment for VR, with the addition of new features such as Lumen lighting and Nanite geometry. The Nvidia Omniverse allowed for seamless integration between Unreal Engine and Rhinoceros 3D, as well as many other apps using connectors. Connector usage allows importing and exporting models and data between the two platforms, allowing them a more intuitive ability to switch between tools and subsequently live link between software's and even include external sensor data. This paper documents and evaluates the knowledge gained of software workflows. Evaluation of produced student work is considered through factors of ease of interface, open nature of tools, and potential for altering the typical design workflow. Analysis provides an insight into the effectiveness of proposed workflows. Subsequent reflection and documentation aim to serve as a possible case study to encourage further incorporation of VR tools into architectural education.
keywords Virtual Reality, Simulation, Architectural education, Design interaction, Live data transfer
series eCAADe
email
last changed 2023/12/10 10:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 548HOMELOGIN (you are user _anon_871907 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002