CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 2006

_id caadria2018_033
id caadria2018_033
authors Bai, Nan and Huang, Weixin
year 2018
title Quantitative Analysis on Architects Using Culturomics - Pattern Study of Prizker Winners Based on Google N-gram Data
doi https://doi.org/10.52842/conf.caadria.2018.2.257
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 257-266
summary Quantitative studies using the corpus Google Ngram, namely Culturomics, have been analyzing the implicit patterns of culture changes. Being the top-standard prize in the field of Architecture since 1979, the Pritzker Prize has been increasingly diversified in the recent years. This study intends to reveal the implicit pattern of Pritzker Winners using the method of Culturomics, based on the corpus of Google Ngram to reveal the relationship of the sign of their fame and the fact of prize-winning. 48 architects including 32 awarded and 16 promising are analyzed in the printed corpus of English language between 1900 and 2008. Multiple regression models and multiple imputation methods are used during the data processing. Self-Organizing Map is used to define clusters among the awarded and promising architects. Six main clusters are detected, forming a 3×2 network of fame patterns. Most promising architects can be told from the clustering, according to their similarity to the more typical prize winners. The method of Culturomics could expand the sight of architecture study, giving more possibilities to reveal the implicit patterns of the existing empirical world.
keywords Culturomics; Google Ngram; Pritzker Prize; Fame Pattern; Self-Organizing Map
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2018_293
id caadria2018_293
authors Lee, Jisun and Lee, Hyunsoo
year 2018
title The Visible and Invisible Network of a Self-Organizing Town - Agent-Based Simulation for Investigating Urban Development Process
doi https://doi.org/10.52842/conf.caadria.2018.2.411
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 411-420
summary This study applies self-organization as a methodology to understand the complex process of city networks caused by interactions between spatial structures and individual behaviors. The agent-based simulations have been conducted to investigate the visible and invisible networks understanding the self-organized aspects of city development processes. To develop optimal future networks providing connectivity and accessibility this study investigates spatial network configurations from internal individual behavior and movement. As results, it was found that the spatial configurations of the agent movement trails match to the current district boundaries and the similar network patterns were seen in various control values of agent behavior settings. This study contributes to searching out the hierarchy of network structures which is an important factor for re-planning of the way system.
keywords Agent-based simulation; network analysis ; self organization ; urban development process ; Physarum polycephalum
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia18_108
id acadia18_108
authors Sanchez, Jose
year 2018
title Platforms for Architecture: Imperatives and Opportunities of Designing Online Networks for Design
doi https://doi.org/10.52842/conf.acadia.2018.108
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 108-117
summary The rise of platforms such as Facebook, YouTube, and Uber, initially celebrated as part of a disruptive new era of the internet, has slowly been reassessed as a problematic and unregulated form of twenty-first-century info-capitalism that contributes to inequality, mistrust, and user polarization. The internet has become a place for content creation, not only consumption, and the content freely created by the network of users has defined a self-organizing system of ad-hoc audiences following echo chambers organized through artificial intelligence, which amplifies previously identified trends. While a large portion of the content created by users seems to be aimed at personal forms of entertainment, a few remarkable projects, such as Wikipedia, have allowed hundreds of users to contribute to a collective goal. While we can observe that the platform model has appeared in diverse disciplines, allowing the creation of content from news articles to music, we have not seen the emergence of a robust design platform intended to proliferate and advance the discipline of architecture.

This paper makes the case that video game technology and its audiences have reached a state of technical capability that could allow for architectural platforms to emerge, one in which players could learn, create, and share architectural designs. Such a platform comes with a series of ethical imperatives, questions of value proposition, and liabilities, as well as a high potential to communicate and proliferate architectural knowledge and know-how. Common’hood, currently under development, will be used as a case study to engage the development of an ethical architectural platform that develops a proposition towards authorship, ownership, and collective engagement.

keywords full paper, platforms, capitalism, network, video game, combinatorics, information theory, entropy, co-ops, platform cooperativism, privacy, encryption
series ACADIA
type paper
email
last changed 2022/06/07 07:56

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia19_654
id acadia19_654
authors Maierhofer, Mathias; Soana, Valentina; Yablonina, Maria; Erazo, Seiichi Suzuki; Körner, Axel; Knippers, Jan; Menges, Achim
year 2019
title Self-Choreographing Network
doi https://doi.org/10.52842/conf.acadia.2019.654
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 654-663
summary The aim of this research is to challenge the prevalent separation between (digital) design and (physical) operation processes of adaptive and interactive architectural systems. The linearity of these processes implies predetermined material or kinetic behaviors, limiting performances to those that are predictable and safe. This is particularly restricting with regard to compliant or flexible material systems, which exhibit significant kinetic and thus adaptive potential, but behave in ways that are difficult to fully predict in advance. In this paper we present a hybrid approach: a real-time, interactive design and operation process that enables the (material) system to be self-aware, fully utilizing and exploring its kinetic design space for adaptive purposes. The proposed approach is based on the interaction of compliant materials with embedded robotic agents, at the interface between digital and physical. This is demonstrated in the form of a room-scale spatial architectural robot, comprising networks of linear elastic components augmented with robotic joints capable of sensing and two axis actuation. The system features both a physical instance and a corresponding digital twin that continuously augments physical performances based on simulation feedback informed by sensor data from the robotic joints. With this setup, spatial adaptation and reconfiguration can be designed in real-time, based on an openended and cyber-physical negotiation between numerical, robotic, material, and human behaviors, in the context of a physically deployed structure and its occupants.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:59

_id ecaade2018_389
id ecaade2018_389
authors Algeciras-Rodriguez, Jose
year 2018
title Stochastic Hybrids - From references to design options through Self-Organizing Maps methodology.
doi https://doi.org/10.52842/conf.ecaade.2018.1.119
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 119-128
summary This ongoing research aims to define a general assisted design method to offer non-trivial design options, where form is produced by merging characteristics from initial reference samples collection that serves as an input set. This project explores design processes laying on the use of non-linear procedures and experiments with Self-Organizing Map (SOM), as neural networks algorithms, to generate geometries. All processes are applied to a set of models representing classic sculpture, whose characteristics are encoded by the SOM process. The result of it is a set of new geometry resembling characteristics from the original references. This method produces hybrid forms that acquire characteristics from several input references. The resulting hybrid entities are intended to be non-trivial solutions to specific design situations, so far, at the stage of this research, mainly formal requirements.
keywords Self-Orgnizing Maps; Cognitive Space; Design Options; Form Finding; Artificial Intelligence
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201816406
id ijac201816406
authors As, Imdat; Siddharth Pal and Prithwish Basu
year 2018
title Artificial intelligence in architecture: Generating conceptual design via deep learning
source International Journal of Architectural Computing vol. 16 - no. 4, 306-327
summary Artificial intelligence, and in particular machine learning, is a fast-emerging field. Research on artificial intelligence focuses mainly on image-, text- and voice-based applications, leading to breakthrough developments in self-driving cars, voice recognition algorithms and recommendation systems. In this article, we present the research of an alternative graph- based machine learning system that deals with three-dimensional space, which is more structured and combinatorial than images, text or voice. Specifically, we present a function-driven deep learning approach to generate conceptual design. We trained and used deep neural networks to evaluate existing designs encoded as graphs, extract significant building blocks as subgraphs and merge them into new compositions. Finally, we explored the application of generative adversarial networks to generate entirely new and unique designs.
keywords Architectural design, conceptual design, deep learning, artificial intelligence, generative design
series journal
email
last changed 2019/08/07 14:04

_id acadia23_v1_196
id acadia23_v1_196
authors Bao, Ding Wen; Yan, Xin; Min Xie, Yi
year 2023
title Intelligent Form
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 196-201.
summary InterLoop employs previously developed workflows that enable multi-planar robotic bending of metal tubes with high accuracy and repeatability (Huang and Spaw 2022). The scale and complexity is managed by employing augmented reality (AR) technology in two capacities, fabrication and assembly (Jahn et al. 2018; Jahn, Newnham, and Berg 2022). The AR display overlays part numbers, bending sequences, expected geometry, and robot movements in real time as the robot fabrication is occurring. For assembly purposes, part numbers, centerlines, and their expected positional relationships are projected via quick response (QR) codes spatially tracked by the Microsoft Hololens 2 (Microsoft 2019). This is crucial due to the length and self-similarity of complex multi-planar parts that make them difficult to distinguish and orient correctly. Leveraging augmented reality technology and robotic fabrication uncovers a novel material expression in tubular structures with bundles, knots, and interweaving (Figure 1).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia18_366
id acadia18_366
authors Baseta, Efilena; Bollinger, Klaus
year 2018
title Construction System for Reversible Self-Formation of Grid Shells. Correspondence between physical and digital form
doi https://doi.org/10.52842/conf.acadia.2018.366
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 366-375
summary This paper presents a construction system which offers an efficient materialization method for double-curved gridshells. This results in an active-bending system of controlled deflections. The latter system embeds its construction manual into the geometry of its components. Thus it can be used as a self-formation process. The two presented gridshell structures are composed of geometry-induced, variable stiffness elements. The latter elements are able to form programmed shapes passively when gravitational loads are applied. Each element consists of two layers and a slip zone between them. The slip allows the element to be flexible when it is straight and increasingly stiffer while its curvature increases. The amplitude of the slip defines the final deformation of the element. As a result, non-uniform deformations can be obtained with uniform cross sections and loads. When the latter elements are used in grid configurations, self-formation of initially planar surfaces emerges. The presented system eliminates the need for electromechanical equipment since it relies on material properties and hierarchical geometrical configurations. Wood, as a flexible and strong material, has been used for the construction of the prototypes. The fabrication of the timber laths has been done via CNC industrial milling processes. The comparison between the initial digital design and the resulting geometry of the physical prototypes is reviewed in this paper. The aim is to inform the design and fabrication process with performance data extracted from the prototypes. Finally, the scalability of the system shows its potential for large-scale applications, such as transformable structures.
keywords full paper, material & adaptive systems, flexible structures, digital fabrication, self-formation
series ACADIA
type paper
email
last changed 2022/06/07 07:54

_id sigradi2018_1580
id sigradi2018_1580
authors Bomfim de Araujo, Alana; Groetelaars , Natalie Johanna; Leão de Amorim, Arivaldo
year 2018
title Use of Dense Stereo Matching for Existing Building Documentation: Comparative Analysis of Tools
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 874-879
summary This paper presents a comparative study of Dense Stereo Matching (DSM) tools to generate point cloud from digital photogrammetric restitution. The capability of four different state-of-the-art software systems as Photoscan (Agisoft), 3DF Zephyr Free (3Dflow), Remake (Autodesk) and Recap 360 (Autodesk) is examined to document a historical object. The main aspects compared are: processing time, export file formats, file size, quality and density of point clouds obtained from tools standard parameters. From the literature review, the analysis and the experiments, it is possible to evaluate the potential of DSM technique for the existing building documentation.
keywords Dense Stereo Matching (DSM); Digital photogrammetry; DSM tools; Point cloud; Triangular irregular network (TIN)
series SIGRADI
email
last changed 2021/03/28 19:58

_id lasg_whitepapers_2019_063
id lasg_whitepapers_2019_063
authors Börner, Katy; and Andreas Bueckle
year 2019
title Envisioning Intelligent Interactive Systems; Data Visualizations for Sentient Architecture
source Living Architecture Systems Group White Papers 2019 [ISBN 978-1-988366-18-0] Riverside Architectural Press: Toronto, Canada 2019. pp.063 - 088
summary This paper presents data visualizations of an intelligent environment that were designed to serve the needs of two stakeholder groups: visitors wanting to understand how that environment operates, and developers interested in optimizing it. The visualizations presented here were designed for [Amatria], a sentient sculpture built by the Living Architecture Systems Group (LASG) at Indiana University Bloomington, IN, USA, in the spring of 2018. They are the result of an extended collaboration between LASG and the Cyberinfrastructure for Network Science Center (CNS) at Indiana University. We introduce [Amatria], review related work on the visualization of smart environments and sentient architectures, and explain how the Data Visualization Literacy Framework (DVL-FW) can be used to develop visualizations of intelligent interactive systems (IIS) for these two stakeholder groups.
keywords living architecture systems group, organicism, intelligent systems, design methods, engineering and art, new media art, interactive art, dissipative systems, technology, cognition, responsiveness, biomaterials, artificial natures, 4DSOUND, materials, virtual projections,
email
last changed 2019/07/29 14:02

_id sigradi2018_1330
id sigradi2018_1330
authors Calijuri Hamra, José Eduardo
year 2018
title Horizontal dialogues and open data: the communication spaces of bottom-up urbanism
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 1204-1211
summary The process of overcoming the digital divide has led to the formation of common interest groups. Network communication has become not only a mean, but also a conditioning for the horizontal structure of groups that are also dedicated to transforming urban spaces. Known as processes of bottom-up urbanism, these groups add virtual layers to urban space, and acting in a cybrid way they make inseparable the actions that occur on the virtual or material environment. This research is dedicated to understanding the dynamics of communication in a Facebook group created in one of these bottom-up urbanism processes.
keywords Bottom-up urbanism; Network society; Facebook; Communication process
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2018_164
id ecaade2018_164
authors Chang, Mei-Chih, Buš, Peter, Tartar, Ayça, Chirkin, Artem and Schmitt, Gerhard
year 2018
title Big-Data Informed Citizen Participatory Urban Identity Design
doi https://doi.org/10.52842/conf.ecaade.2018.2.669
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 669-678
summary The identity of an urban environment is important because it contributes to self-identity, a sense of community, and a sense of place. However, under present-day conditions, the identities of expanding cities are rapidly deteriorating and vanishing, especially in the case of Asian cities. Therefore, cities need to build their urban identity, which includes the past and points to the future. At the same time, cities need to add new features to improve their livability, sustainability, and resilience. In this paper, using data mining technologies for various types of geo-referenced big data and combine them with the space syntax analysis for observing and learning about the socioeconomic behavior and the quality of space. The observed and learned features are identified as the urban identity. The numeric features obtained from data mining are transformed into catalogued levels for designers to understand, which will allow them to propose proper designs that will complement or improve the local traditional features. A workshop in Taiwan, which focuses on a traditional area, demonstrates the result of the proposed methodology and how to transform a traditional area into a livable area. At the same time, we introduce a website platform, Quick Urban Analysis Kit (qua-kit), as a tool for citizens to participate in designs. After the workshop, citizens can view, comment, and vote on different design proposals to provide city authorities and stakeholders with their ideas in a more convenient and responsive way. Therefore, the citizens may deliver their opinions, knowledge, and suggestions for improvements to the investigated neighborhood from their own design perspective.
keywords Urban identity; unsupervised machine learning; Principal Component Analysis (PCA); citizen participated design; space syntax
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2018_085
id caadria2018_085
authors Chung, Chia-Chun and Jeng, Tay-Sheng
year 2018
title Information Extraction Methodology by Web Scraping for Smart Cities - Using Machine Learning to Train Air Quality Monitor for Smart Cities
doi https://doi.org/10.52842/conf.caadria.2018.2.515
source T. Fukuda, W. Huang, P. Janssen, K. Crolla, S. Alhadidi (eds.), Learning, Adapting and Prototyping - Proceedings of the 23rd CAADRIA Conference - Volume 2, Tsinghua University, Beijing, China, 17-19 May 2018, pp. 515-524
summary This paper presents an opportunistic sensing system for air quality monitoring to forecast the implicit factors of air pollution. Opportunistic sensing is performed by web scraping in the social network service to extract information. The data source for the air quality analysis combines two types of information: explicit and implicit information. The objective is to develop the information extraction methodology by web scraping for smart cities. The application development methodology has potential for solving real-world problems such as air pollution by data comparison between social activity observing and data collecting in sensor network.
keywords smart city; open data; web scraping; social media; machine learning
series CAADRIA
email
last changed 2022/06/07 07:56

_id acadia18_286
id acadia18_286
authors Claire Im, Hyeonji; AlOthman, Sulaiman; García del Castillo, Jose Luis
year 2018
title Responsive Spatial Print. Clay 3D printing of spatial lattices using real-time model recalibration
doi https://doi.org/10.52842/conf.acadia.2018.286
source ACADIA // 2018: Recalibration. On imprecisionand infidelity. [Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-17729-7] Mexico City, Mexico 18-20 October, 2018, pp. 286-293
summary Additive manufacturing processes are typically based on a horizontal discretization of solid geometry and layered deposition of materials, the speed and the rate of which are constant and determined by the stability criteria. New methods are being developed to enable three-dimensional printing of complex self-supporting lattices, expanding the range of possible outcomes in additive manufacturing. However, these processes introduce an increased degree of formal and material uncertainty, which require the development of solutions specific to each medium. This paper describes a development to the 3D printing methodology for clay, incorporating a closed-loop feedback system of material surveying and self-correction to recompute new depositions based on scanned local deviations from the digital model. This Responsive Spatial Print (RSP) method provides several improvements over the Spatial Print Trajectory (SPT) methodology for clay 3D printing of spatial lattices previously developed by the authors. This process compensates for the uncertain material behavior of clay due to its viscosity, malleability, and deflection through constant model recalibration, and it increases the predictability and the possible scale of spatial 3D prints through real-time material-informed toolpath generation. The RSP methodology and early successful results are presented along with new challenges to be addressed due to the increased scale of the possible outcomes.
keywords work in progress, closed loop system, spatial clay printing, self-supporting lattice, in-situ printking, extrusion rate, material behavior
series ACADIA
type paper
email
last changed 2022/06/07 07:52

_id ecaade2018_433
id ecaade2018_433
authors Daher, Elie, Kubicki, Sylvain and Pak, Burak
year 2018
title Participation-based Parametric Design in Early Stages - A participative design process for spatial planning in office building
doi https://doi.org/10.52842/conf.ecaade.2018.1.429
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 1, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 429-438
summary The term participation has been used to define different activities, such as civil debate, communication, consultation, delegation, self-help construction, political decisions. However, participation in design started from the idea that individuals whom being affected by a design project must contribute to the design process. Recently, designers have been moving closer to the future users and developing new ways to empower them to get involved in the design process. In this paper we rethink the way the early design process is developed in a participatory approach thanks to parametric methods. A use case is proposed showing the potential of parametric design methods to empower the participation of users in the design of their facilities. The use case is dealing in particular with the spatial planning of an office building where the users together with the spatial planning team are able to design the layout spatial configuration by 1) fixing the objectives, 2) manipulating the model, 3)modifying some parameters, 4) visualizing the iterations and evaluating in a real-time each solution in an interactive 3D environment and together with facility managers 5) choosing the configuration of the spatial layout.
keywords Computational design; Participatory design; Optimization ; Parametric design
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2018_292
id ecaade2018_292
authors Dennemark, Martin, Aicher, Andreas, Schneider, Sven and Hailu, Tesfaye
year 2018
title Generative Hydrology Network Analysis - A parametric approach to water infrastructure based urban planning
doi https://doi.org/10.52842/conf.ecaade.2018.2.327
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 327-334
summary Urban water systems need to be dimensioned well to be economical and distribute water in a good quality to all consumers. Their pipe sizes are dependent on demand and location of consuming nodes. Within uncertain development of cities, planning sustainable hydraulic networks is challenging. This paper explores, how the definition of urban design parameters can be supported using parametric urban design models and computational water network analysis. For the latter we developed new components for Grasshopper based on the open accessible water analysis tool EPANET. In two example cases we demonstrate potential applications of this tool for water-sensitive planning of emerging cities to find optimal positions for water sources or pipe diameters. In subsequent research, this could be used to derive probability-based recommendations for the dimensioning of a water network within uncertain growth.
keywords water infrastructure; urban planning; parametric design; uncertainty; emerging cities
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_121
id ecaade2018_121
authors Dimopoulos, Georgios
year 2018
title Museum and Cultural Heritage in the World of Digital Technology
doi https://doi.org/10.52842/conf.ecaade.2018.2.199
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 199-204
summary Museum as a cultural epiphenomenon reflects all changes occurring in cultural, political, economic and technological fields. Nowadays, as new technologies bring upon significant changes in the way we perceive space and time and open up new ways in understanding the world and all things, the museum is perceived as a network of potential things, a kind of web intersection that connects objective with digital reality. New technologies within the museum's space form a new relationship between the public and the cultural heritage objects, and offers new approach perspectives by reinforcing revisionist trends as far as the role and importance of the museum.
keywords metanarratives; digital museum; visual reality
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2018_344
id ecaade2018_344
authors El-Gewely, Noor, Wong, Christopher, Tayefi, Lili, Markopoulou, Areti, Chronis, Angelos and Dubor, Alexandre
year 2018
title Programming Material Intelligence Using Food Waste Deposition to Trigger Automatic Three-Dimensional Formation Response in Bioplastics
doi https://doi.org/10.52842/conf.ecaade.2018.2.271
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 271-278
summary Bioplastics are by their very nature parametric materials, programmable through the selection of constituent components and the ratios in which they appear, and as such present significant potential as architectural building materials for reasons beyond sustainability and biodegradability. This paper presents a system through which rigid three-dimensional doubly curved hyperbolic paraboloid shapes are automatically formed from two-dimensional sheet casts by harnessing the inherent flexibility and expressiveness of bioplastics. The system uses a gelatin-based bioplastic supplemented with granular organic matter from food waste in conjunction with a split-frame casting system that enables the self-formation of three-dimensional geometries by directing the force of the bioplastic's uniform contraction as it dries. By adjusting the food waste added to the bioplastic, its properties can be tuned according to formal and performative needs; here, dehydrated granulated orange peel and dehydrated spent espresso-ground coffee are used both to impart their inherent characteristics and also to influence the degree of curvature of the resulting bioplastic surfaces. Multi-material casts incorporating both orange peel bioplastic and coffee grounds bioplastic are shown to exert a greater influence over the degree of curvature than either bioplastic alone, and skeletonized panels are shown to exhibit the same behavior as their solid counterparts. Potential developments of the technology so as to gain greater control of the curvature performance, particularly in the direction of computer-controlled additive manufacturing, are considered, as is the potential of application in architectural scale.
keywords Bioplastics; Composites; Fabrication; Materials
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2018_1693
id sigradi2018_1693
authors Granero, Adriana Edith
year 2018
title The Inclusion of decentralized and self-organized system in the process of construction of design thinking
source SIGraDi 2018 [Proceedings of the 22nd Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Brazil, São Carlos 7 - 9 November 2018, pp. 115-122
summary This work exposes the possible composition of a system composed of "crowd-working" of static, inert, flexible architecture elements, similar or identical entities, the "tesserae" and the integration with the link generated with Artificial Intelligence artifacts, a complex adaptive system, as a first experimental step to developments of Nanomaterials and systems that respond to the construction of the projective thought of the architectural envelope. The research responds to a general strategy of theoretical revision, with inductive and mixed methods. The exploration work examines the relative space within the idea of reason and the social function of architecture.
keywords Self-organized; Decentralized; Nanorrobotic; Parametrism; Architectural Envelope
series SIGRADI
email
last changed 2021/03/28 19:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 100HOMELOGIN (you are user _anon_172089 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002