CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3153

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
doi https://doi.org/10.52842/conf.caadria.2019.1.371
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2024_355
id caadria2024_355
authors Wu, Zhaoji, Wang, Zhe, Cheng, Jack C.P. and Kwok, Helen H.L.
year 2024
title A Knowledge Graph Model for Performance-Based Generative Design and Its Applications in Accelerated Design
doi https://doi.org/10.52842/conf.caadria.2024.1.395
source Nicole Gardner, Christiane M. Herr, Likai Wang, Hirano Toshiki, Sumbul Ahmad Khan (eds.), ACCELERATED DESIGN - Proceedings of the 29th CAADRIA Conference, Singapore, 20-26 April 2024, Volume 1, pp. 395–404
summary Data integration and information enrichment pose significant challenges to the advancement of Performance-based Generative Design (PGD). One potential solution to these challenges is the utilization of Knowledge Graph (KG). However, the implementation of KG in PGD, particularly in leveraging expert knowledge to accelerate the process, remains an area that has not been thoroughly explored. In this research, we propose a PGD-KG schema to capture and represent the topological relationships and functionalities within PGD. We also introduce a method for automatically generating PGD-KG models from parametric design models enriched with semantic information. Additionally, we develop reasoning algorithms based on expert knowledge of sustainable design to facilitate automated performance evaluation. The effectiveness of the PGD-KG approach was demonstrated through its implementation in a design project, where the reasoning algorithms proved capable of significantly reducing the solution space in PGD by 88.50%, while still ensuring the inclusion of an adequate number of Pareto optimal solutions. This research contributes to the design acceleration by integration of expert knowledge, particularly sustainable design strategies, into PGD.
keywords performance-based generative design, knowledge graph, reasoning algorithm, building performance evaluation, sustainable building design.
series CAADRIA
email
last changed 2024/11/17 22:05

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
doi https://doi.org/10.52842/conf.caadria.2019.2.343
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2023_39
id sigradi2023_39
authors Borges, Marina, Karantino, Lucas and Gorges, Diego
year 2023
title Walkability: Digital Parametric Process for Analyzing and Evaluating Walkability Criteria in Peripheral Central Regions of Belo Horizonte
source García Amen, F, Goni Fitipaldo, A L and Armagno Gentile, Á (eds.), Accelerated Landscapes - Proceedings of the XXVII International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2023), Punta del Este, Maldonado, Uruguay, 29 November - 1 December 2023, pp. 397–408
summary According to one of the Sustainable Development Goals (UN, 2018), it is important for cities to be inclusive, safe, resilient, and sustainable. Therefore, it is necessary to value pedestrians and consequently active mobility, giving priority to the concepts of the Transportation Oriented Development (TOD) methodology. Although the Master Plan (BELO HORIZONTE, 2019) proposes that areas located in regional centralities are enhancing active mobility, can residents actually benefit from these resources at a walkable distance to access basic services? Thus, the aim of this research is to utilize digital technologies to visualize, analyze, and assess pedestrians' access conditions to commerce and basic services, identifying areas lacking infrastructure. The goal is for the model to serve as a reference for the development of public policies. To achieve this, metadata was used for parametric modeling to study walkability in the peripheral region of the city of Belo Horizonte.
keywords Walkability, Urban Data Analysis, Urban Design, Parametric Urbanism, Algorithmic Logic
series SIGraDi
email
last changed 2024/03/08 14:07

_id ijac201917106
id ijac201917106
authors Brown, Nathan C. and Caitlin T. Mueller
year 2019
title Design variable analysis and generation for performance-based parametric modeling in architecture
source International Journal of Architectural Computing vol. 17 - no. 1, 36-52
summary Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance- driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies.
keywords Parametric design, design space formulation, data analysis, design variables, dimensionality reduction
series journal
email
last changed 2019/08/07 14:04

_id caadria2019_647
id caadria2019_647
authors Camacho, Daniel, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Hands On Design - Integrating haptic interaction and feedback in virtual environments for enhanced immersive experiences in design practice.
doi https://doi.org/10.52842/conf.caadria.2019.1.563
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 563-572
summary The usability of virtual reality (VR) controller interfaces are often complex and difficult for first time users. Most controllers provide minimal feedback which relegates the potential for heightened interaction and feedback within virtual experiences. This research explores how haptic technology systems partnered with VR can deliver immersive interactions between user and virtual environment (VE). This research involves the development of a haptic glove interface prototype that incorporates a force feedback and vibrotactile feedback system. It focuses on determining a workflow that communicates in real-time user interaction and environmental feedback using Unreal Engine and the produced haptic glove system. Testing and calibrating the prototype feedback system provided a baseline for developers to rationalise and improve accuracy of current real-time virtual feedback systems. The evaluation of this research in industry unfolds new technical knowledge for implementing a wider range of haptic technologies within VR. This further development would involve reviewing the usability and interaction standards for VR users in the design process.
keywords Virtual Environments; Haptic Technologies; Feedback; Interaction; Usability
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_250
id ecaadesigradi2019_250
authors Czyñska, Klara
year 2019
title Visual Impact Analysis of Large Urban Investments on the Cityscape
doi https://doi.org/10.52842/conf.ecaade.2019.3.297
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 297-304
summary The article presents the assessment method for large (horizontally spread) urban investment and its visual impact on the cityscape using digital analyses. The visual impact assessment is often used in relation to facilities which dominate in the cityscape, mainly tall buildings. Various studies, however, examine the impact of wide but relatively low-rising buildings and their impact on the cityscape. The article presents a methodology for the assessment of the visual impact and a case study for a building facility comprising several tightly developed and medium height blocks of buildings in a city center of a significant historical value in Gdañsk, Poland. The research has been based on the Visual Impact Size method (VIS) and a city model consisting of a regular cloud of points (Digital Surface Model). The simulation has been developed using a dedicated C++ software (developed by author). The study aimed at assessing the following: a) to what degree such an urban investment can influence the cityscape; b) how the impact can be analyzed using digital techniques, and c) what input parameters of the analysis are crucial for satisfactory accuracy of its results.
keywords digital cityscape analysis; urban skyline; large urban investments; visual impact; VIS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id caadria2019_117
id caadria2019_117
authors Deniz Kiraz, Leyla and Kocaturk, Tuba
year 2019
title Integrating User-Behaviour as Performance Criteria in Conceptual Parametric Design
doi https://doi.org/10.52842/conf.caadria.2019.1.215
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 215-224
summary Prediction of user behaviour has always been problematic in architectural design. Several methods have already been developed and explored to model human behaviour in architecture. However, the majority of these methods are implemented during post-design evaluation where the insights obtained can only be implemented in a limited capacity. There is an apparent gap and opportunity, in current research and practice, to embed behaviour simulations directly into the conceptual design process. The proposed paper (research) aims to fill this gap. This paper will report on the results of a recently completed research exploring the integration process of Agent Based Modelling into the conceptual design process, using a parametric design approach. The research resulted in the development of a methodological framework for the integration of behavioural parameters into the explorative stages of the early design process. This paper also offers a categorisation and critical evaluation of existing Agent Based Modelling applications in current research and practice, which leads to the formulation of possible pathways for future implementation.
keywords Performance Based Design; Generative Design; Behaviour Modelling; Agent Based Modelling; Parametric Design
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2019_006
id cf2019_006
authors Di Mascio, Danilo
year 2019
title Visualizing Mackintosh’s alternative design proposal for Scotland Street School
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 25
summary This paper describes the process of creation of a set of visualizations (elevations, perspective views and a short animation) of C.R. Mackintosh’s original but unrealized first design proposal for Scotland Street School (dated January 1904). Moreover, the piece of writing reflects upon some key aspects of the project such as how architectural historians were involved and how ambiguities due to the discrepancies between the drawings and missing details were resolved by studying multiple drawings and transferring clues from other Mackintosh’s built works. The contributions of this research are important for several reasons: it proposes a methodology that can be applied to similar research projects; it explains the educational value of the development work, which can be defined as digitally handcrafted, behind the visualisations; it contributes to studies of buildings designed by C.R. Mackintosh by using digital technologies that open up new insights to aspects still overlooked of his architectural production.
keywords digital handcrafter, digital heritage, 3D digital reconstruction, visualisation, Charles Rennie Mackintosh
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id ecaadesigradi2019_016
id ecaadesigradi2019_016
authors Eloy, Sara, Dias, Luís, Ourique, Lázaro and Sales Dias, Miguel
year 2019
title Home Mobility Hazards Detected via Object Recognition in Augmented Reality
doi https://doi.org/10.52842/conf.ecaade.2019.2.415
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 415-422
summary We present an Environmental Analysis and Safety Advisor system capable of identify the environmental barriers and hazards found in the homes of elderly people. This augmented reality tool runs on a portable computing device and can be used by informal and formal caregivers without specific knowledge of Accessible Design, to evaluate the safeness of an elderly home environment, ensuring that potential fall hazards are detected and corrected. The system recognizes specific indoor elements of the house (e.g. arm-chair, bed, chair), and then computes and analyses their mutual distances in the environment so that a warning of hazard is emitted in case of need (e.g. loose cable, not enough space to pass a wheelchair). In this context, we implemented object recognition at the category level of miniature versions of real sized furniture and the determination of the distance between neighboring objects, signaling if it is below a certain threshold value. Environmental Analysis tool can then recognize furniture and measure the distance between two furniture elements enabling the system to pop up an alert sign if the space left does not guarantee good accessibility.
keywords augmented reality; computer vision; object category recognition; ambient assisted living
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_027
id ecaadesigradi2019_027
authors Erzetic, Catherine, Dobbs, Tiara, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Enhancing User-Engagement in the Design Process through Augmented Reality Applications
doi https://doi.org/10.52842/conf.ecaade.2019.2.423
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 423-432
summary Augmented Reality (AR) technologies are often perceived as the most impactful method to enhance the communication between the designer and the client during the iterative design process. However, the significance of designing the User Interface (UI) and the User Experience (UX) are often underestimated. To intercede, this research aims to employ new and existing techniques to develop UI's, and comparatively assess "the accuracy and completeness with which specified users can achieve specified goals in particular environments" (Stone, 2005) - a notion this research delineates as 'effectiveness'. Prompted by the work of key scholars, the developed UI's were assessed through the lens of existing UI evaluation techniques, including: Usability Heuristics (Nielsen, 1994) and Visual and Cognitive Heuristics (Zuk and Carpendale, 2006). In partnership with PTW Architects, characteristics such as the rapidity and complexity of interactions, in conjunction with the interface's simplicity and intuitiveness, were extracted from 15 trials underwent by architectural practitioners. The outcomes of this research highlights strategies for the effective development of user interface design for mobile augmented reality applications.
keywords User Interface; Human Centered Design; User Experience; Heuristics; Usability Inspection Method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id acadia19_40
id acadia19_40
authors Garcia del Castillo y López, Jose Luis
year 2019
title Robot Ex Machina
doi https://doi.org/10.52842/conf.acadia.2019.040
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 40-49
summary Industrial robotic arms are increasingly present in digital fabrication workflows due to their robustness, degrees of freedom, and potentially large scale. However, the range of possibilities they provide is limited by their typical software control paradigms, specifically offline programming. This model requires all the robotic instructions to be pre-defined before execution, a possibility only affordable in highly predictable environments. But in the context of architecture, design and art, it can hardly accommodate more complex forms of control, such as responding to material feedback, adapting to changing conditions on a construction site, or on-the-fly decision-making. We present Robot Ex Machina, an open-source computational framework of software tools for real-time robot programming and control. The contribution of this framework is a paradigm shift in robot programming models, systematically providing a platform to enable real-time interaction and control of mechanical actuators. Furthermore, it fosters programming styles that are reactive to, rather than prescriptive about, the state of the robot. We argue that this model is, compared to traditional offline programming, beneficial for creative individuals, as its concurrent nature and immediate feedback provide a deeper and richer set of possibilities, facilitates experimentation, flow of thought, and creative inquiry. In this paper, we introduce the framework, and discuss the unifying model around which all its tools are designed. Three case studies are presented, showcasing how the framework provides richer interaction models and novel outcomes in digital making. We conclude by discussing current limitations of the model and future work.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id acadia19_576
id acadia19_576
authors García del Castillo y López, Jose Luis; Bechthold, Martin; Seibold, Zach; Mhatre, Saurabh; Alhadidi, Suleiman
year 2019
title Janus Printing
doi https://doi.org/10.52842/conf.acadia.2019.576
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 576-585
summary The benefits of additive manufacturing technologies for the production of customized construction elements has been well documented for several decades. Multi-material additive manufacturing (MM-AM) enhances these capacities by introducing region-specific characteristics to printed objects. Several examples of the production of multi-material assemblies, including functionally-graded materials (FGMs) exist at the architectural scale, but none are known for ceramics. Factors limiting the development and application of this production method include the cost and complexity of existing MM-AM machinery, and the lack of a suitable computational workflow for the production of MM-AM ceramics, which often relies on a continuous linear toolpath. We present a method for the MM-AM of paste-based ceramics that allows for unique material expressions with relatively simple end-effector design. By borrowing methods of co-extrusion found in other industries and incorporating a 4th axis of motion into the printing process, we demonstrate a precisely controlled MM-AM deposition strategy for paste-based ceramics. We present a computational workflow for the generation of toolpaths, and describe full-body tiles and 3D artifacts that can be produced using this method. Future process refinements include the introduction of more precise control of material gradation and refinements to material composition for increased element functionality.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id caadria2019_080
id caadria2019_080
authors Green, Stephen, King, Geoff, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Designing Out Urban Heat Islands - Optimisation of footpath materials with different albedo value through evolutionary algorithms to address urban heat island effect
doi https://doi.org/10.52842/conf.caadria.2019.2.603
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 603-612
summary The Urban Heat Island (UHI) effect is pronounced in dense urban developments, and particular an issue in the case study city of Parramatta, where temperature increases are impacting use of public space, health, and economic productivity. To mitigate against elevated temperatures in built up areas, this research explores the optimisation of paving material layouts through using an evolutionary algorithm. High albedo (reflective) materials are objectively cooler than low albedo (absorbent) materials yet tend to be more expensive. To reduce the amount of heat absorbent pavement materials whilst keeping in mind material costs, a range of materials of different albedo levels (reflectivity) can be assigned on the same path using an evolutionary algorithm to optimise the coolest materials for the cheapest price. Over the course of this paper, this research aim will be approached using visual scripting software such as Grasshopper to simulate daylight analysis and to generate an optimisation algorithm. Previous research on the topics of UHI have revealed different methods for solving specific problems, all focusing on using software analysis to determine an informed decision on construction. The paper contributes via a computational approach of material selection to battle urban heat island effects.
keywords urban heat island; albedo value; material properties; evolutionary algorithm ; landscape architecture
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2019_008
id cf2019_008
authors Han, Zhen; Ning Cao, Gang Liu and Wei Yan
year 2019
title MOPSO for BIM: A Multi-Objective Optimization Tool Using Particle Swarm Optimization Algorithm on a BIMbased Visual Programming Platform
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 39-51
summary With the increasing applications of computational methods in the field of design optimization, intelligent metaheuristic algorithms are playing a more important role in building performance optimization. To enable the integration of optimization algorithms with Building Information Modeling (BIM), this research implemented the Particle Swarm Optimization (PSO) algorithm on Revit + Dynamo, which is a parametric BIM platform. A MultiObjective PSO (MOPSO) Solver has been developed in Dynamo using MATLAB and C# programming languages. The methodology of the research and the validation studies are presented in the paper. The validation studies prove the effectiveness of the MOPSO Solver for both standard optimization test functions and an optimization example of a simplified building design.
keywords Particle Swarm Optimization, BIM, multi-objective optimization, visual programming
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_100
id ecaadesigradi2019_100
authors Henriques, Gonçalo Castro, Bueno, Ernesto, Lenz, Daniel and Sardenberg, Victor
year 2019
title Generative Systems:Intertwining Physical, Digital and Biological Processes, a case study
doi https://doi.org/10.52842/conf.ecaade.2019.1.025
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 25-34
summary The fourth Industrial Revolution is characterised by the computational fusion of physical, digital and biological systems. Increasing information in terms of size, speed and scope exponentially. This fusion requires improved, if not new, tools and methods to deal with complexity and information processing. By opening Generative Systems to interact with the context, we believe that they can develop solutions that are more adequate for our time. This research began with a literature review about generative systems and their application to solve problems. We then selected the tools, Cellular Automata, L-Systems, Genetic Algorithms and Shape Grammar, and thought about how to translate these original mathematical tools to specific design situations. We tested the application of these tools and methods in a workshop, implementing recursive loops to open these techniques to interference. Analysing the empirical results made us revise our design thinking, relying on the study of complexity to understand how these techniques can be more context-aware, so we can make design evolve. Finally, we present a comparative framework analyses that interlaces techniques and methods, so in the future we can merge physical, digital and biological information.
keywords generative systems; design thinking; complexity; context interaction; recursion
series eCAADeSIGraDi
email
last changed 2022/06/07 07:49

_id ecaadesigradi2019_495
id ecaadesigradi2019_495
authors Herrera, Pablo C and Braida, Frederico
year 2019
title Digital Technologies in Latin American Architecture - A Literature Review from the Third to the Fourth Industrial Revolution
doi https://doi.org/10.52842/conf.ecaade.2019.1.431
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 431-440
summary This paper approaches the literature that combines the fields of Architectural Computing and Architecture and Urbanism produced in Latin America during the first two decades of the 21st Century. The main objective is to map the advancement of Digital Technology in Architecture and Urbanism in the context of the Third Industrial Revolution, in order to identify perspectives towards a Fourth Industrial Revolution. As methodology was applied a chronological survey of the literature produced in book format, predominantly printed in the 21st Century by Latin Americans researches in leading digital themes. At last, it can be verified that the production is still very scarce and still has not incorporated, in a significant way, the themes related to the Fourth Industrial Revolution.
keywords Latin America; Digital Technologies; Industrial Revolution; Literature Review; Architectural Computing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 157HOMELOGIN (you are user _anon_90036 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002