CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 1880

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_234
id caadria2019_234
authors Bamborough, Chris
year 2019
title The Nature of Data in Early Modern Architectural Practice.
doi https://doi.org/10.52842/conf.caadria.2019.2.343
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 343-352
summary In contemporary data-driven society, forces of capital increasingly seek risk-averse decision making through data and digital calculation, aligned to this the discourse around design intelligence in architecture has begun to embrace the role of data and the technical non-human as much as the human. In parallel, the cultural understanding of data, in technologically mediated societies, has become tied to the digital representation of information experienced in everyday life, which in turn influences human practices. A problem exists in the dominance of scientific thought around data in architecture that exerts disciplinary bias towards quantity rather than quality. In contemporary digital practice, data is assumed to offer an objective characterisation of the world and have faithful representation through the mechanisms of the computer. From this shift, a macro question exists concerning the influence of data's conceptualisation on the physical products of architecture. To contribute to this overall question this paper considers the register of data in early modernism identified as a moment when scientific abstraction and the mapping capacity of the machine combine to afford recognisable data practices and infrastructures.
keywords Data; Design Practice; Infrastructure; History; Theory
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917106
id ijac201917106
authors Brown, Nathan C. and Caitlin T. Mueller
year 2019
title Design variable analysis and generation for performance-based parametric modeling in architecture
source International Journal of Architectural Computing vol. 17 - no. 1, 36-52
summary Many architectural designers recognize the potential of parametric models as a worthwhile approach to performance- driven design. A variety of performance simulations are now possible within computational design environments, and the framework of design space exploration allows users to generate and navigate various possibilities while considering both qualitative and quantitative feedback. At the same time, it can be difficult to formulate a parametric design space in a way that leads to compelling solutions and does not limit flexibility. This article proposes and tests the extension of machine learning and data analysis techniques to early problem setup in order to interrogate, modify, relate, transform, and automatically generate design variables for architectural investigations. Through analysis of two case studies involving structure and daylight, this article demonstrates initial workflows for determining variable importance, finding overall control sliders that relate directly to performance and automatically generating meaningful variables for specific typologies.
keywords Parametric design, design space formulation, data analysis, design variables, dimensionality reduction
series journal
email
last changed 2019/08/07 14:04

_id ecaadesigradi2019_250
id ecaadesigradi2019_250
authors Czyńska, Klara
year 2019
title Visual Impact Analysis of Large Urban Investments on the Cityscape
doi https://doi.org/10.52842/conf.ecaade.2019.3.297
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 297-304
summary The article presents the assessment method for large (horizontally spread) urban investment and its visual impact on the cityscape using digital analyses. The visual impact assessment is often used in relation to facilities which dominate in the cityscape, mainly tall buildings. Various studies, however, examine the impact of wide but relatively low-rising buildings and their impact on the cityscape. The article presents a methodology for the assessment of the visual impact and a case study for a building facility comprising several tightly developed and medium height blocks of buildings in a city center of a significant historical value in Gdańsk, Poland. The research has been based on the Visual Impact Size method (VIS) and a city model consisting of a regular cloud of points (Digital Surface Model). The simulation has been developed using a dedicated C++ software (developed by author). The study aimed at assessing the following: a) to what degree such an urban investment can influence the cityscape; b) how the impact can be analyzed using digital techniques, and c) what input parameters of the analysis are crucial for satisfactory accuracy of its results.
keywords digital cityscape analysis; urban skyline; large urban investments; visual impact; VIS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id cf2019_006
id cf2019_006
authors Di Mascio, Danilo
year 2019
title Visualizing Mackintosh’s alternative design proposal for Scotland Street School
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 25
summary This paper describes the process of creation of a set of visualizations (elevations, perspective views and a short animation) of C.R. Mackintosh’s original but unrealized first design proposal for Scotland Street School (dated January 1904). Moreover, the piece of writing reflects upon some key aspects of the project such as how architectural historians were involved and how ambiguities due to the discrepancies between the drawings and missing details were resolved by studying multiple drawings and transferring clues from other Mackintosh’s built works. The contributions of this research are important for several reasons: it proposes a methodology that can be applied to similar research projects; it explains the educational value of the development work, which can be defined as digitally handcrafted, behind the visualisations; it contributes to studies of buildings designed by C.R. Mackintosh by using digital technologies that open up new insights to aspects still overlooked of his architectural production.
keywords digital handcrafter, digital heritage, 3D digital reconstruction, visualisation, Charles Rennie Mackintosh
series CAAD Futures
email
last changed 2019/07/29 14:08

_id cf2019_005
id cf2019_005
authors Eisenstadt, Viktor; Klaus-Dieter Althoff and Christoph Langenhan
year 2019
title Supporting Architectural Design Process with FLEA A Distributed AI Methodology for Retrieval, Suggestion, Adaptation, and Explanation of Room Configurations
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 24
summary The artificial intelligence methods, such as case-based reasoning and artificial neural networks were already applied to the task of architectural design support in a multitude of specific approaches and tools. However, modern AI trends, such as Explainable AI (XAI), and additional features, such as providing contextual suggestions for the next step of the design process, were rarely considered an integral part of these approaches or simply not available. In this paper, we present an application of a distributed AI-based methodology FLEA (Find, Learn, Explain, Adapt) to the task of room configuration during the early conceptual phases of architectural design. The implementation of the methodology in the framework MetisCBR applies CBR-based methods for retrieval of similar floor plans to suggest possibly inspirational designs and to explain the returned results with specific explanation patterns. Furthermore, it makes use of a farm of recurrent neural networks to suggest contextually suitable next configuration steps and to present design variations that show how the designs may evolve in the future. The flexibility of FLEA allows for variational use of its components in order to activate the currently required modules only. The methodology was initialized during the basic research project Metis (funded by German Research Foundation) during which the architectural semantic search patterns and a family of corresponding floor plan representations were developed. FLEA uses these patterns and representations as the base for its semantic search, explanation, next step suggestion, and adaptation components. The methodology implementation was iteratively tested during quantitative evaluations and user studies with multiple floor plan datasets.
keywords Room con?guration, Distributed AI, Case-based reasoning, Neural networks, Explainable AI
series CAAD Futures
type normal paper
email
last changed 2019/07/29 14:11

_id cf2019_008
id cf2019_008
authors Han, Zhen; Ning Cao, Gang Liu and Wei Yan
year 2019
title MOPSO for BIM: A Multi-Objective Optimization Tool Using Particle Swarm Optimization Algorithm on a BIMbased Visual Programming Platform
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 39-51
summary With the increasing applications of computational methods in the field of design optimization, intelligent metaheuristic algorithms are playing a more important role in building performance optimization. To enable the integration of optimization algorithms with Building Information Modeling (BIM), this research implemented the Particle Swarm Optimization (PSO) algorithm on Revit + Dynamo, which is a parametric BIM platform. A MultiObjective PSO (MOPSO) Solver has been developed in Dynamo using MATLAB and C# programming languages. The methodology of the research and the validation studies are presented in the paper. The validation studies prove the effectiveness of the MOPSO Solver for both standard optimization test functions and an optimization example of a simplified building design.
keywords Particle Swarm Optimization, BIM, multi-objective optimization, visual programming
series CAAD Futures
email
last changed 2019/07/29 14:08

_id ecaadesigradi2019_495
id ecaadesigradi2019_495
authors Herrera, Pablo C and Braida, Frederico
year 2019
title Digital Technologies in Latin American Architecture - A Literature Review from the Third to the Fourth Industrial Revolution
doi https://doi.org/10.52842/conf.ecaade.2019.1.431
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 431-440
summary This paper approaches the literature that combines the fields of Architectural Computing and Architecture and Urbanism produced in Latin America during the first two decades of the 21st Century. The main objective is to map the advancement of Digital Technology in Architecture and Urbanism in the context of the Third Industrial Revolution, in order to identify perspectives towards a Fourth Industrial Revolution. As methodology was applied a chronological survey of the literature produced in book format, predominantly printed in the 21st Century by Latin Americans researches in leading digital themes. At last, it can be verified that the production is still very scarce and still has not incorporated, in a significant way, the themes related to the Fourth Industrial Revolution.
keywords Latin America; Digital Technologies; Industrial Revolution; Literature Review; Architectural Computing
series eCAADeSIGraDi
email
last changed 2022/06/07 07:50

_id ecaade2024_4
id ecaade2024_4
authors Irodotou, Louiza; Gkatzogiannis, Stefanos; Phocas, Marios C.; Tryfonos, George; Christoforou, Eftychios G.
year 2024
title Application of a Vertical Effective Crank–Slider Approach in Reconfigurable Buildings through Computer-Aided Algorithmic Modelling
doi https://doi.org/10.52842/conf.ecaade.2024.1.421
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 421–430
summary Elementary robotics mechanisms based on the effective crank–slider and four–bar kinematics methods have been applied in the past to develop architectural concepts of reconfigurable structures of planar rigid-bar linkages (Phocas et al., 2020; Phocas et al., 2019). The applications referred to planar structural systems interconnected in parallel to provide reconfigurable buildings with rectangular plan section. In enabling structural reconfigurability attributes within the spatial circular section buildings domain, a vertical setup of the basic crank–slider mechanism is proposed in the current paper. The kinematics mechanism is integrated on a column placed at the middle of an axisymmetric circular shaped spatial linkage structure. The definition of target case shapes of the structure is based on a series of numerical geometric analyses that consider certain architectural and construction criteria (i.e., number of structural members, length, system height, span, erectability etc.), as well as structural objectives (i.e., structural behavior improvement against predominant environmental actions) aiming to meet diverse operational requirements and lightweight construction. Computer-aided algorithmic modelling is used to analyze the system's kinematics, in order to provide a solid foundation and enable rapid adaptation for mechanisms that exhibit controlled reconfigurations. The analysis demonstrates the implementation of digital parametric design tools for the investigation of the kinematics of the system at a preliminary design stage, in avoiding thus time-demanding numerical analysis processes. The design process may further provide enhanced interdisciplinary performance-based design outcomes.
keywords Reconfigurable Structures, Spatial Linkage Structures, Kinematics, Parametric Associative Design
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2019_104
id caadria2019_104
authors Johan, Ryan, Chernyavsky, Michael, Fabbri, Alessandra, Gardner, Nicole, Haeusler, M. Hank and Zavoleas, Yannis
year 2019
title Building Intelligence Through Generative Design - Structural analysis and optimisation informed by material performance
doi https://doi.org/10.52842/conf.caadria.2019.1.371
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 371-380
summary Generative design (GD) is the process of defining high-level goals and constraints and then using computation to automatically explore a range of solutions that meet the desired requirements. Generative processes are intelligent ways to fast-track early design stages. The outcomes are analyzed simultaneously to inform decisions for architects and engineers. Whilst material properties have been defined as a driving agent within generative systems to calculate structure, material performance or structural capacity are not linked with early decision-making. In response, this paper sets a constrained approach upon traditional and non-traditional materials to validate the feasibility of structures. A GD tool is developed within Grasshopper using C-sharp, Karamaba3D, Galapagos and various engineering formulas. The result is a script, which prioritizes the structural qualities of material as a driving factor within generative systems and facilitates communication across different expertise.
keywords Intelligent systems; generative design; material properties; structural analysis; evolutionary algorithms
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_402
id ecaadesigradi2019_402
authors Karali, Penelopi F., Grisiute, Ayda and Werner, Liss C.
year 2019
title Bio-Modules - Cyber-physical modular responsive variations for dark urban areas using bio-degradable materials
doi https://doi.org/10.52842/conf.ecaade.2019.2.495
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 495-504
summary This paper documents the design and fabrication process of modular responsive lighting installation. The design and research led to a modular and transformable urban lighting concept, combining unique material behaviour and cyber-physical system. The main goal was to investigate how material characteristics, composition and performance could be programmed in order to generate a range of modular components. Modular tiles and joints combination designed of sustainable materials - bioplastics and cork sheets - were created and used together with number of sensors and micro-controllers. Furthermore, the installation concept links technical and psychological aspects that potentially could be used for the benefits of city dwellers. Paper consists of two parts. First part is the introduction of a broader urban night lighting design context to which the project belongs. This includes covering existing social issues related to urban darkness, as well as the need to increase biodiversity within built environment, through introducing new materials. The second part of the paper describes the design and fabrication process, that employs the conclusions discovered in the first part through set of material experimentations, design project and the reflections on the results.
keywords modularity; material behavior; lighting installation; cyber-physical systems; perception
series eCAADeSIGraDi
email
last changed 2022/06/07 07:52

_id ecaadesigradi2019_408
id ecaadesigradi2019_408
authors Lohse, Theresa and Werner, Liss C.
year 2019
title Semi-flexible Additive Manufacturing Materials for Modularization Purposes - A modular assembly proposal for a foam edge-based spatial framework
doi https://doi.org/10.52842/conf.ecaade.2019.1.463
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 463-470
summary This paper introduces a series of design and fabrication tests directed towards the use of bendable 3D printing materials in order to simplify a foam bubble-based geometry as a frame structure for modular assembly. The aspiration to reference a spittlebug's bubble cocoon in nature for a light installation in the urban context was integrated into a computational workflow conditioning light-weight, material-, and cost savings along with assembly-simplicity. Firstly, before elaborating on the project motivation and background in foam structures and applications of 3D-printed thermoplastic polyurethane (TPU) material, this paper describes the physical nature of bubble foams in its relevant aspects. Subsequently this is implemented into the parametric design process for an optimized foam structure with Grasshopper clarifying the need for flexible materials to enhance modular feasibility. Following, the additive manufacturing iterations of the digitally designed node components with TPU are presented and evaluated. Finally, after the test assembly of both components is depicted, this paper assesses the divergence between natural foams and the case study structure with respect to self-organizing behavior.
keywords digital fabrication; 3D Printing; TPU flexibility ; modularity; optimization
series eCAADeSIGraDi
email
last changed 2022/06/07 07:59

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id cf2019_067
id cf2019_067
authors Pebryani , Nyoman Dewi and Michael C.B. Kleiss
year 2019
title Ethno-Computation: Culturally Specific Design Application of Geringsing Textile Patterns
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 538-551
summary This study focuses on (1) understanding the indigenous algorithm of specific material culture named Geringsing textile patterns, and then (2) transforming the indigenous algorithm into an application that best serves local artisans and younger generation as a design tool and educational tool. Patterns design, which is created in textile as a material culture from a specific area, has a unique design grammar. Geringsing textile is unique to this part of the world because it is produced with double-ikat weaving technique, and this technique is only used in three places in the world. This material culture passes from generation to generation as an oral tradition. To safeguard, document, and digitize this knowledge, a sequential research methodology of ethnography and computation is employed in this study to understand the indigenous algorithm of Geringsing textile patterns, and then to translate the algorithm with computer simulation. This culturally specific design application then is tested by two local artisans and two aspiring artists from the younger generations in the village to see whether this application can serve as a design and educational tool.
keywords Ethno-Computation, Culturally specific, Indigenous algorithm, Geringsing
series CAAD Futures
email
last changed 2019/07/29 14:18

_id caadria2020_259
id caadria2020_259
authors Rhee, Jinmo, Veloso, Pedro and Krishnamurti, Ramesh
year 2020
title Integrating building footprint prediction and building massing - an experiment in Pittsburgh
doi https://doi.org/10.52842/conf.caadria.2020.2.669
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 669-678
summary We present a novel method for generating building geometry using deep learning techniques based on contextual geometry in urban context and explore its potential to support building massing. For contextual geometry, we opted to investigate the building footprint, a main interface between urban and architectural forms. For training, we collected GIS data of building footprints and geometries of parcels from Pittsburgh and created a large dataset of Diagrammatic Image Dataset (DID). We employed a modified version of a VGG neural network to model the relationship between (c) a diagrammatic image of a building parcel and context without the footprint, and (q) a quadrilateral representing the original footprint. The option for simple geometrical output enables direct integration with custom design workflows because it obviates image processing and increases training speed. After training the neural network with a curated dataset, we explore a generative workflow for building massing that integrates contextual and programmatic data. As trained model can suggest a contextual boundary for a new site, we used Massigner (Rhee and Chung 2019) to recommend massing alternatives based on the subtraction of voids inside the contextual boundary that satisfy design constraints and programmatic requirements. This new method suggests the potential that learning-based method can be an alternative of rule-based design methods to grasp the complex relationships between design elements.
keywords Deep Learning; Prediction; Building Footprint; Massing; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_568
id ecaadesigradi2019_568
authors Rubinowicz, Paweł
year 2019
title Protection of the waterfront panoramas based on computational 3D-analysis
doi https://doi.org/10.52842/conf.ecaade.2019.2.325
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 325-332
summary The article presents the application of the Visual Protection Surface (VPS) method in protecting waterfront panoramas. The digital analysis of visual impact, which is most frequently used in urban planning, assesses the impact of new investment on the cityscape. The study presented in the article is based on a reverse approach -determining the maximum height of buildings so new facilities do not distort protected vistas in a city, vistas which are crucial for the preservation of the city's cultural identity and spatial identification. The assessment of the application is based on a case study of Gdańsk, Poland, where a 3D LiDAR model was used. The study involved the use of software developed by the author (C++). It also analyzed VPS input parameters. Conclusions can be used to assess and verify analysis findings with different software (GIS/CAD). The article shows the potential application of the VPS method in urban planning.
keywords computational urban analyses; urban landscape protection; strategic views; tall buildings; 3D city models; VPS method
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id ecaadesigradi2019_519
id ecaadesigradi2019_519
authors Scheeren, Rodrigo, Herrera, Pablo C. and Sperling, David
year 2019
title Evolving stages of digital fabrication in Latin America - Outlines of a research and extension project
doi https://doi.org/10.52842/conf.ecaade.2019.2.797
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 797-806
summary The introduction of digital fabrication technologies in Latin America faces diverse, heterogeneous and decentralized conditions. After several years, there was not a comprehensive perspective on the situation in the region. The goal of this paper is to present a project called "Homo Faber: Digital Fabrication in Latin America" and some of its results. The project comprehends the creation of a database that led to researches and exhibitions about digital fabrication in design, architecture and building construction in Latin America. The questions that guide the investigation try to understand which factors contribute and limit the potential of automation in material processes towards 4.0 industry.
keywords Computer Aided Architectural Design; Digital Fabrication; Latin America; Mapping
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id cf2019_034
id cf2019_034
authors Usman, Muhammad; Davide Schaumann, Brandon Haworth, Mubbasir Kapadia and Petros Faloutsos
year 2019
title Joint Parametric Modeling of Buildings and Crowds for Human-Centric Simulation and Analysis
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 256
summary Simulating groups of virtual humans (crowd simulation) affords the analysis and data-driven design of interactions between buildings and their occupants. For this to be useful in practice however, crowd simulators must be well coupled with modeling tools in a way that allows users to iteratively use simulation feedback to adjust their designs. This is a non-trivial research and engineering task as designers often use parametric exploration tools early in their design pipelines. To address this issue, we propose a platform that provides a joint parametric representation of (a) a building and the bounds of its permissible alterations, (b) a crowd that populates the environment, and (c) the activities that the crowd engages in. Based on this input, users can systematically run simulations and analyze the results in the form of data-maps, spatialized representations of human-centric analyses. The platform combines Dynamo with SteerSuite, two established tools for parametric design and crowd simulations, to create a familiar node-based workow. We systematically evaluate the approach by tuning spatial, social, and behavioral parameters to generate human-centric analyses for the design of a generic exhibition space.
keywords Human-centric analytics, crowd simulation, parametric modeling, building occupancy, multi-agent systems
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_667
id ecaadesigradi2019_667
authors Werner, Liss C.
year 2019
title Form and Data - from linear Calculus to cybernetic Computation and Interaction
doi https://doi.org/10.52842/conf.ecaade.2019.2.675
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 675-682
summary Digital architecture developed in the 1960s and, supported by CAAD the 1990s, has created the path towards an architecture produced by computer and architect in a mutual relationship. The evolution of architecture since the 1970s led to the beginning of the first digital turn in the 1990s, and subsequently to the emergence of new typologies of buildings, architects and design tools; atom-based, bit-based (virtual) [1], and cyber-physical as a combination of both. The paper provides an insight into historical foundations of CAAD insofar as it engages with complexity in mechanics, geometry, and space between the 1600s and 1950s. I will address a selection of principles discovered, and mechanisms invented before computer-aided-architectural-design; those include the typewriter, the Cartesian grid and a pre-cyber-physical system by Hermann von Helmholtz. The paper concludes with a summary and an outlook to the future of CAAD challenged by the variety of correlations of disparate data sets.
keywords HCI; cyber-physical systems; cybernetics; digital history; computational architecture; Helmholtz
series eCAADeSIGraDi
email
last changed 2022/06/07 07:57

_id acadia19_000
id acadia19_000
year 2019
title ACADIA 19:UBIQUITY AND AUTONOMY
doi https://doi.org/10.52842/conf.acadia.2019
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) 702 p.
series ACADIA
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 93HOMELOGIN (you are user _anon_796818 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002