CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 910

_id ecaadesigradi2019_511
id ecaadesigradi2019_511
authors Guimar?es Sampaio, Hugo, Luna de Melo Jorge, Leonardo, Mour?o Fiuza, Rafael and Ribeiro Cardoso, Daniel
year 2019
title A New Approach to the Cultural Heritage Documentation Process
doi https://doi.org/10.52842/conf.ecaade.2019.1.569
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 569-576
summary Looking at the existing tools for preservation in patrimony, we perceive an over-appreciation in material heritage conservation over intangibles. Through the implementation of algorithmic documentation methodology, to obtain information that composes a certain cultural expression, this paper aims to present an attempt to expand the tools of documentation and registration of cultural heritage and also the applications of this approach for a language implementation with a propositional aspect.
keywords Cultural Heritage; Parametric Modeling; Process Documentation; Shape Grammar; Brazilian Design
series eCAADeSIGraDi
email
last changed 2022/06/07 07:51

_id caadria2019_290
id caadria2019_290
authors Ma, Chenlong, Zhu, Shuyan and Xiang, Ke
year 2019
title Digital Aided Façade Design Introduced in a Traditional Design Workflow - An experience from one large-scale museum design and construction practice
doi https://doi.org/10.52842/conf.caadria.2019.1.675
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 675-684
summary This paper discusses the opportunities and barriers of adopting parametric tools in discrete elements of the design development documentation processes in parallel with more traditional 2D computer aided architectural design (CAAD). We believe it is a more reasonable way for small to middle sized design companies in China, to introduce parametric design method into the design and construction process, especially when there being a long way from traditional CAAD approach to an all-BIM future in China.
keywords parametric tools; collaborative design; façade design
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2019_183
id caadria2019_183
authors Macken, Marian, Mulla, Sarosh and Paterson, Aaron
year 2019
title Inhabiting the Drawing - 1:1 in time and space
doi https://doi.org/10.52842/conf.caadria.2019.1.505
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 505-514
summary One of the fundamental characteristics of architectural drawing is its use of scale. Since the Renaissance - during which architectural production shifted from the construction site to paper - this scalar understanding began by using bodily measurements. In developing designs, the architect projects future occupation of the drawing with their eyes and hands moving over both its physical surface and represented space. The different relationship established between the digital drawer and the body has been criticised; Paul Emmons argues that CAD's full scale - or rather scale-less - capabilities omit this bodily presence of the drawer (Emmons, 2005). Due to the use of full scale data recording, the drawer zooms in and out to consider aspects, severing the drawing's relation to the operator's body. This paper explores ways in which the body and drawings intersect, beyond Emmons definition, and hence considers the influence of the method of drawing on perceptions of scale and the inhabitation of digital drawings. It uses ongoing collaborative research projects and exhibitions to explore the inhabitation of digital drawing at full scale. These works highlight the fundamental importance of the line within architecture, not as demarcation, divider or indexical reference, but as a traces of bodily projections.
keywords architectural drawing; architectural scale; full scale drawing; post factum documentation
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaadesigradi2019_057
id ecaadesigradi2019_057
authors Paiva, Ricardo Alexandre
year 2019
title DIGITAL MODERN - 'Towards a new materiality' of Modern Architecture in Fortaleza-Ceará (Brazil).
doi https://doi.org/10.52842/conf.ecaade.2019.1.505
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 505-512
summary The topic 'Digital Modern' is a metaphor for expressing the importance of the valorization of Modernism in the current stage of capitalism and in the context of the 4th Industrial Revolution, marked also by the inclusion of the virtual/digital in architecture design, "towards a new materiality". Linking, past, present and future, this paper aims to discuss the importance of documentation of the most emblematic modern works of Fortaleza, capital of Ceará (Brazil), using digital technologies, such as the BIM platform and 3D printing, with the goal of contributing to the valorization of memory and conservation of this important architectural heritage.
keywords digital modeling; modern architecture; BIM; digital documentation; Fortaleza-CE (Brazil)
series eCAADeSIGraDi
email
last changed 2022/06/07 08:00

_id ecaadesigradi2019_123
id ecaadesigradi2019_123
authors Souza, Leonardo Prazeres Veloso de, Ponzio, Angélica Paiva, Bruscato, Underléa Miotto and Cattani, Airton
year 2019
title A-BIM: A New Challenge for Old Paradigms
doi https://doi.org/10.52842/conf.ecaade.2019.1.233
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 233-240
summary This paper is the result of a pedagogic proposal applied to undergraduate students of architecture in order to present new digital design tools and methods. This study aims to connect procedural contents to different design strategies enrolled by students with special focus on complex geometries. The objective was to offer the necessary assistance to an appropriated design development, by reducing the habitual mishaps related to the lack of technical skills with digital tools for both the design reasoning and the subsequent graphic representation of proposals. As an answer, a new design approach called A-BIM (Algorithmic-based Building Information Modeling) was introduced to students, which integrates BIM platforms with algorithmic modelling software allowing, in this way, some formal flexibility allied to an adequate graphic documentation.
keywords A-BIM; algorithmic design; BIM technology ; parametric software
series eCAADeSIGraDi
email
last changed 2022/06/07 07:56

_id acadia19_000
id acadia19_000
year 2019
title ACADIA 19:UBIQUITY AND AUTONOMY
doi https://doi.org/10.52842/conf.acadia.2019
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) 702 p.
series ACADIA
last changed 2022/06/07 07:49

_id cf2019_052
id cf2019_052
authors Abdelmohsen, Sherif ;Passaint Massoud, Rana El-Dabaa, Aly Ibrahim and Tasbeh Mokbel
year 2019
title The Effect of Hygroscopic Design Parameters on the Programmability of Laminated Wood Composites for Adaptive Façades
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, p. 435
summary Typical adaptive façades respond to external conditions to enhance indoor spaces based on complex mechanical actuators and programmable functions. Hygroscopic embedded properties of wood, as low-cost low-tech programmable material, have been utilized to induce passive motion mechanisms. Wood as anisotropic material allows for different passive programmable motion configurations that relies on several hygroscopic design parameters. This paper explores the effect of these parameters on programmability of laminated wood composites through physical experiments in controlled humidity environment. The paper studies variety of laminated configurations involving different grain orientations, and their effect on maximum angle of deflection and its durability. Angle of deflection is measured using image analysis software that is used for continuous tracking of deflection in relation to time. Durability is studied as the number of complete programmable cycles that wood could withstand before reaching point of failure. Results revealed that samples with highest deflection angle have least programmability durability.
keywords Wood, hygroscopic design, lamination, deflection, durability, adaptive façades
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ijac201917206
id ijac201917206
authors Ackerman, Aidan; Jonathan Cave, Chien-Yu Lin and Kyle Stillwell
year 2019
title Computational modeling for climate change: Simulating and visualizing a resilient landscape architecture design approach
source International Journal of Architectural Computing vol. 17 - no. 2, 125-147
summary Coastlines are changing, wildfires are raging, cities are getting hotter, and spatial designers are charged with the task of designing to mitigate these unknowns. This research examines computational digital workflows to understand and alleviate the impacts of climate change on urban landscapes. The methodology includes two separate simulation and visualization workflows. The first workflow uses an animated particle fluid simulator in combination with geographic information systems data, Photoshop software, and three-dimensional modeling and animation software to simulate erosion and sedimentation patterns, coastal inundation, and sea level rise. The second workflow integrates building information modeling data, computational fluid dynamics simulators, and parameters from EnergyPlus and Landsat to produce typologies and strategies for mitigating urban heat island effects. The effectiveness of these workflows is demonstrated by inserting design prototypes into modeled environments to visualize their success or failure. The result of these efforts is a suite of workflows which have the potential to vastly improve the efficacy with which architects and landscape architects use existing data to address the urgency of climate change.
keywords Modeling, simulation, environment, ecosystem, landscape, climate change, sea level rise, urban heat island
series journal
email
last changed 2019/08/07 14:04

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_660
id caadria2019_660
authors Aghaei Meibodi, Mania, Giesecke, Rena and Dillenburger, Benjamin
year 2019
title 3D Printing Sand Molds for Casting Bespoke Metal Connections - Digital Metal: Additive Manufacturing for Cast Metal Joints in Architecture
doi https://doi.org/10.52842/conf.caadria.2019.1.133
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 133-142
summary Metal joints play a relevant role in space frame constructions, being responsible for large amount of the overall material and fabrication cost. Space frames which are constructed with standardized metal joints are constrained to repetitive structures and topologies. For customized space frames, the fabrication of individual metal joints still remains a challenge. Traditional fabrication methods such as sand casting are labour intensive, while direct 3D metal printing is too expensive and slow for the large volumes needed in architecture.This research investigates the use of Binder Jetting technology to 3D print sand molds for casting bespoke metal joints in architecture. Using this approach, a large number of custom metal joints can be fabricated economically in short time. By automating the generation of the joint geometry and the corresponding mold system, an efficient digital process chain from design to fabrication is established. Several design studies for cast metal joints are presented. The approach is successfully tested on the example of a full scale space frame structure incorporating almost two hundred custom aluminum joints.
keywords 3D printing; binder jetting; sand casting; metal joints; metal casting; space frame; digital fabrication; computational design; lightweight; customization
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2019_055
id cf2019_055
authors Agirbas, Asli
year 2019
title A proposal for the use of fractal geometry algorithmically in tiling design
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 438-453
summary The design inspired by nature is an ongoing issue from the past to the present. There are many design examples inspired from nature. Fractal geometry formation, which is focused on this study, is a system seen in nature. A model based on fractal growth principle was proposed for tile design. In this proposal made with using Visual Programming Language, a tiling design experiment placed in a hexagonal grid system was carried out. Thus, a base was created for tile designs to be made using the fractal principle. The results of the case study were evaluated and potential future studies were discussed.
keywords Fractals, Tile design, Biomimetic design, Algorithmic design
series CAAD Futures
email
last changed 2019/07/29 14:18

_id ecaadesigradi2019_068
id ecaadesigradi2019_068
authors Agirbas, Asli
year 2019
title The Effect of Complex Wall Forms on the Room Acoustics - An experimental case study
doi https://doi.org/10.52842/conf.ecaade.2019.2.097
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 97-102
summary The complexity of the wall form affects the acoustics of the space. In this study, the effect of the complex form walls produced by nCloth dynamic simulation on the acoustics of an office space was investigated. In this research, reverberation time and Speech Transmission Index (STI) values of the pilot office space with one wall having complex form and the office space with all of the walls as flat were measured by acoustic simulation. As a result of the comparison, it has been found that, within speech intelligibility and reverberation time, the acoustics of the space with one wall having complex form is better than the acoustics of the space with all the walls as flat.
keywords nCloth; Acoustics; Complex forms; Modeling & simulation
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ijac201917105
id ijac201917105
authors Agkathidis, Asterios; Yorgos Berdos and André Brown
year 2019
title Active membranes: 3D printing of elastic fibre patterns on pre-stretched textiles
source International Journal of Architectural Computing vol. 17 - no. 1, 74-87
summary There has been a steady growth, over several decades, in the deployment of fabrics in architectural applications; both in terms of quantity and variety of application. More recently, three-dimensional printing and additive manufacturing have added to the palette of technologies that designers in architecture and related disciplines can call upon. Here, we report on research that brings those two technologies together – the development of active membrane elements and structures. We show how these active membranes have been achieved by laminating three-dimensional printed elasto-plastic fibres onto pre-stretched textile membranes. We report on a set of experimentations involving one-, two- and multi-directional geometric arrangements that take TPU 95 and polypropylene filaments and apply them to Lycra textile sheets, to form active composite panels. The process involves a parameterised design, actualised through a fabrication process including stress-line simulation, fibre pattern three-dimensional printing and the lamination of embossed patterns onto a pre-stretched membrane; followed by the release of tension afterwards in order to allow controlled, self-generation of the final geometry. Our findings document the investigation into mapping between the initial two-dimensional geometries and their resulting three-dimensional doubly curved forms. We also reflect on the products of the resulting, partly serendipitous, design process.
keywords Digital fabrication, three-dimensional printing, parametric design, material computation, fabrics
series journal
email
last changed 2019/08/07 14:04

_id acadia19_630
id acadia19_630
authors Ahlquist, Sean
year 2019
title Expanding the Systematic Agencyof a Material System
doi https://doi.org/10.52842/conf.acadia.2019.630
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 630-641
summary Computational design and fabrication have reached an accomplished level of ubiquity and proficiency in the field of architecture, in both academia and practice. Materiality driving structure, responsiveness, and spatial organization can be seen to evolve, in kind, with the capabilities to fabricate deeper material hierarchies. Such maturity of a procedural material-driven approach spurs a need to shift from the dictations of how to explorations of why material efficiencies, bespoke aesthetics, and performativity are critical to a particular architecture, requiring an examination of linkages between approach, techniques, and process. The material system defines a branch of architectural research utilizing bespoke computational techniques to generate performative material capacities that are inextricably linked to both internal and external forces and energies. This paper examines such a self-referential view to define an expanded ecological approach that integrates new modes of design agency and shift the material system from closed-loop relationship with site to open-ended reciprocation with human behavior. The critical need for this capacity is shown in applications of novel textile hybrid material systems—as sensorially-responsive environments for children with the neurological autism spectrum disorder—in ongoing research titled Social Sensory Architectures. Through engaging fabrication across all material scales, manners of elastic responsivity are shown, through a series of feasibility studies, to exhibit a capacity for children to become design agents in exploring the beneficial interrelationship of sensorimotor agency and social behavior. The paper intends to contribute a theoretical approach by which novel structural capacities of a material system can support a larger ecology of social and behavioral agency.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2019_413
id caadria2019_413
authors Ahrens, Chandler, Chamberlain, Roger, Mitchell, Scott, Barnstorff, Adam and Gelbard, Joshua
year 2019
title Controlling Daylight Reflectance with Cyber-physical Systems
doi https://doi.org/10.52842/conf.caadria.2019.1.433
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 433-442
summary Cyber-physical systems increasingly inform and alter the perception of atmospheric conditions within interior environments. The Catoptric Surface research project uses computation and robotics to precisely control the location of reflected daylight through a building envelope to form an image-based pattern of light on the building interior's surfaces. In an attempt to amplify or reduce spatial perception, the daylighting reflected onto architectural surfaces within a built environment generates atmospheric effects. The modification of light patterns mapped onto existing or new surfaces enables the perception of space to not rely on form alone. The mapping of a new pattern that is independent of architectural surfaces creates a visual effect of a formless atmosphere and holds the potential to affect the way people interact with the space. People need different amounts and quality of daylight depending on physiological differences due to age or the types of tasks they perform. This research argues for an informed luminous and atmospheric environment that is relative both to the user and more conceptual architectural aspirations of spatial perception controlled by a cyber-physical robotic façade system.
keywords Contextual; Computation
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaadesigradi2019_318
id ecaadesigradi2019_318
authors Al Bondakji, Louna, Lammich, Anne-Liese and Werner, Liss C.
year 2019
title ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
doi https://doi.org/10.52842/conf.ecaade.2019.3.083
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 83-90
summary The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike.
keywords 3D-Visualization; open source data; immersive virtual reality; interactive ; Unity
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id cf2019_037
id cf2019_037
authors Aljammaz, Mohammed ; Tsung-Hsien Wang and Chengzhi Peng
year 2019
title The influence of Saudi Arabian culture on energy use: Improving the time-use schedules in energy simulation for houses in Riyadh
source Ji-Hyun Lee (Eds.) "Hello, Culture!"  [18th International Conference, CAAD Futures 2019, Proceedings / ISBN 978-89-89453-05-5] Daejeon, Korea, pp. 273-289
summary Culture influences the way that people act and behave in all societies. In Saudi Arabia, culture and beliefs directly influence the lifestyle and behaviour of its citizens. Culture also impacts on energy usage of buildings, but this factor is often excluded from energy use simulations. A consequence of this is a mismatch between energy prediction and real energy usage. This paper demonstrates how a time-use data (TUD) model can be used to create a more realistic estimate of energy consumption in Saudi Arabia. TUD has been collected through a survey of 300 people living in Riyadh. The performance of the computational TUD model is cross-referenced with empirical data and the outcomes are used to discuss how the TUD model can be applied more effectively in energy use simulations.
keywords time-use data, energy simulation, energy use prediction, load schedules, occupant behaviours,
series CAAD Futures
email
last changed 2019/07/29 14:15

_id ecaadesigradi2019_061
id ecaadesigradi2019_061
authors Alkadri, Miktha Farid, De Luca, Francesco, Turrin, Michela and Sariyildiz, Sevil
year 2019
title Making use of Point Cloud for Generating Subtractive Solar Envelopes
doi https://doi.org/10.52842/conf.ecaade.2019.1.633
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 633-640
summary As a contextual and passive design strategy, solar envelopes play a great role in determining building mass based on desirable sun access during the predefined period. With the rapid evolution of digital tools, the design method of solar envelopes varies in different computational platforms. However, current approaches still lack in covering the detailed complex geometry and relevant information of the surrounding context. This, consequently, affects missing information during contextual analysis and simulation of solar envelopes. This study proposes a subtractive method of solar envelopes by considering the geometrical attribute contained in the point cloud of TLS (terrestrial laser scanner) dataset. Integration of point cloud into the workflow of solar envelopes not only increases the robustness of final geometry of existing solar envelopes but also enhances awareness of architects during contextual analysis due to consideration of surface properties of the existing environment.
keywords point cloud data; solar envelopes; subtractive method; solar access
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id caadria2019_005
id caadria2019_005
authors Alva, Pradeep, Janssen, Patrick and Stouffs, Rudi
year 2019
title A Spatial Decision Support Framework For Planning - Creating Tool-Chains for Organisational Teams
doi https://doi.org/10.52842/conf.caadria.2019.2.011
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 11-20
summary In practice, most planners do not make significant use of planning support systems. Although significant research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this paper focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams within an organisation, with varying skill sets and objectives. In the proposed framework, the core decision-making process uses set decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing tool-chains for a real-world land suitability case study. The tool-chain was implemented on top of a GIS platform.
keywords GIS SDSS PSS; Planning Automation; Geoprocessing; Data Analytics; Geoinformatics
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201917403
id ijac201917403
authors Alva, Pradeep; Patrick Janssen and Rudi Stouffs
year 2019
title Geospatial tool-chains: Planning support systems for organisational teams
source International Journal of Architectural Computing vol. 17 - no. 4, 336-356
summary In practice, most planners do not make significant use of planning support systems. Although extensive research has been conducted, the focus tends to be on supporting individual tasks, and the outcomes are often the development of new stand-alone tools that are difficult to integrate into existing workflows. The knowledge contribution in this article focuses on developing a novel spatial decision support framework focusing on the workflows and tool-chains that span across different teams with varying skill sets and objectives, within an organisation. In the proposed framework, the core decision-making process uses a set of decision parameters that are combined using a weighted decision tree. The framework is evaluated by developing and testing a workflow and GIS tool-chain for a real-world case study of land suitability and mixed-use potentiality analysis.
keywords GIS, SDSS, PSS, planning automation, TOD, raster geoprocessing, data analytics, geoinformatics
series journal
email
last changed 2020/11/02 13:34

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 45HOMELOGIN (you are user _anon_263037 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002