CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 905

_id acadia20_236p
id acadia20_236p
authors Anton, Ana; Jipa, Andrei; Reiter, Lex; Dillenburger, Benjamin
year 2020
title Fast Complexity
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 236-241
summary The concrete industry is responsible for 8% of the global CO2 emissions. Therefore, using concrete in more complex and optimized shapes can have a significant benefit to the environment. Digital fabrication with concrete aims to overcome the geometric limitations of standardized formworks and thereby reduce the ecological footprint of the building industry. One of the most significant material economy potentials is in structural slabs because they represent 85% of the weight of multi-story concrete structures. To address this opportunity, Fast Complexity proposes an automated fabrication process for highly optimized slabs with ornamented soffits. The method combines reusable 3D-printed formwork (3DPF) and 3D concrete printing (3DCP). 3DPF uses binder-jetting, a process with submillimetre resolution. A polyester coating is applied to ensure reusability and smooth concrete surfaces otherwise not achievable with 3DCP alone. 3DPF is selectively used only where high-quality finishing is necessary, while all other surfaces are fabricated formwork-free with 3DCP. The 3DCP process was developed interdisciplinary at ETH Zürich and employs a two-component material system consisting of Portland cement mortar and calcium aluminate cement accelerator paste. This fabrication process provides a seamless transition from digital casting to 3DCP in a continuous automated process. Fast Complexity selectively uses two complementary additive manufacturing methods, optimizing the fabrication speed. In this regard, the prototype exhibits two different surface qualities, reflecting the specific resolutions of the two digital processes. 3DCP inherits the fine resolution of the 3DPF strictly for the smooth, visible surfaces of the soffit, for which aesthetics are essential. In contrast, the hidden parts of the slab use the coarse resolution specific to the 3DCP process, not requiring any formwork and implicitly achieving faster fabrication. In the context of an increased interest in construction additive manufacturing, Fast Complexity explicitly addresses the low resolution, lack of geometric freedom, and limited reinforcement options typical to layered extrusion 3DCP, as well as the limited customizability in concrete technology.
series ACADIA
type project
email
last changed 2021/10/26 08:08

_id ascaad2021_142
id ascaad2021_142
authors Bakir, Ramy; Sara Alsaadani, Sherif Abdelmohsen
year 2021
title Student Experiences of Online Design Education Post COVID-19: A Mixed Methods Study
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 142-155
summary This paper presents findings of a survey conducted to assess students’ experiences within the online instruction stage of their architectural education during the lockdown period caused by the COVID-19 pandemic between March and June 2020. The study was conducted in two departments of architecture in both Cairo branches of the Arab Academy for Science, Technology & Maritime Transport (AASTMT), Egypt, with special focus on courses involving a CAAD component. The objective of this exploratory study was to understand students’ learning experiences within the online period, and to investigate challenges facing architectural education. A mixed methods study was used, where a questionnaire-based survey was developed to gather qualitative and quantitative data based on the opinions of a sample of students from both departments. Findings focus on the qualitative component to describe students’ experiences, with quantitative data used for triangulation purposes. Results underline students’ positive learning experiences and challenges faced. Insights regarding digital tool preferences were also revealed. Findings are not only significant in understanding an important event that caused remote architectural education in Egypt but may also serve as an important stepping-stone towards the future of design education in light of newly-introduced disruptive online learning technologies made necessary in response to lockdowns worldwide
series ASCAAD
email
last changed 2021/08/09 13:13

_id caadria2020_062
id caadria2020_062
authors Lu, Ming and Yuan, Philip F.
year 2020
title A New Algorithm to Get Optimized Target Plane on 6-Axis Robot For Fabrication
doi https://doi.org/10.52842/conf.caadria.2020.2.393
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 393-402
summary In usual robotic fabrication by 6 axis industrial robot such as KUKA ,ABB and other brands ,the usual robot's 4th ,5th and 6th axis is exactly converge in one point .When this type robot (pieper) is doing movement commands ,setting the degree of 4th axis close to zero is an ideal condition for motion stability ,especially for putting device which connect to tool head on 4th axis arm part.In plastic melting or others print which not cares the rotation angle about the printing direction(the printing direction means the effector's output normal direction vector, KUKA is X axis,ABB is Z axis) ,the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing.The paper introduces a new algorithm to get the analytics solution.The algorithm is clear explained by mathematics and geometry ways. At the end of paper, a grasshopper custom plugin is provided ,which contains this new algorithm ,with this plugin, people can get the optimized target path plane more easily.
keywords 3D printing; brick fabrication; robotic; optimization algorithm; grasshopper plugin
series CAADRIA
email
last changed 2022/06/07 07:59

_id artificial_intellicence2019_87
id artificial_intellicence2019_87
authors Ming Lu, Wei Ran Zhu, and Philip F. Yuan
year 2020
title Toward a Collaborative Robotic Platform: FUROBOT
doi https://doi.org/https://doi.org/10.1007/978-981-15-6568-7_6
source Architectural Intelligence Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2021)
summary In usual robotic fabrication by 6-axis industrial robots such as KUKA, ABB, and other brands, the usual robot’s 4th, 5th, and 6th axis is exactly converged in one point. When this type robot (pieper) is doing movement commands, setting the degree of 4th axis close to zero is an ideal condition for motion stability, especially for putting device which connects to tool head on 4th axis arm part. In plastic melting or others print which not cares the rotation angle about the printing direction (the printing direction means the effector’s output normal direction vector, KUKA is X axis, ABB is Z axis), the optimization of 4th axis technology not only makes printing stable but also makes better quality for printing. The paper introduces a new algorithm to get the analytics solution. The algorithm is clearly explained by mathematics and geometry ways. At the end of the paper, a grasshopper custom plugin is provided, which contains this new algorithm, with this plugin, people can get the optimized target path plane more easily.
series Architectural Intelligence
email
last changed 2022/09/29 07:28

_id sigradi2022_298
id sigradi2022_298
authors Perry, Isha N.; Xue, Zhouyi; Huang, Hui-Ling; Crispe, Nikita; Vegas, Gonzalo; Swarts, Matthew; Gomez Z., Paula
year 2022
title Human Behavior Simulations to Determine Best Strategies for Reducing COVID-19 Risk in Schools
source Herrera, PC, Dreifuss-Serrano, C, Gómez, P, Arris-Calderon, LF, Critical Appropriations - Proceedings of the XXVI Conference of the Iberoamerican Society of Digital Graphics (SIGraDi 2022), Universidad Peruana de Ciencias Aplicadas, Lima, 7-11 November 2022 , pp. 39–50
summary The dynamics of COVID-19 spread have been studied from an epidemiological perspective, at city, country, and global scales (Rabajante, 2020, Ma, 2020, and Giuliani et al., 2020), although after two years of the pandemic we know that viruses spread mostly through built environments. This study is part of the Spatiotemporal Modeling of COVID-19 spread in buildings research (Gomez, Hadi, and Kemenova et al., 2020 and 2021), which proposes a multidimensional model that integrates spatial configurations, temporal use of spaces, and virus characteristics into one multidimensional model. This paper presents a specific branch of this model that analyzes the behavioral parameters, such as vaccination, masking, and mRNA booster rates, and compares them to reducing room occupancy. We focused on human behavior, specifically human interactions within six feet. We utilized the multipurpose simulation software, AnyLogic, to quantify individual exposure to the virus, in the high school building by Perkins and Will. The results show how the most effective solution, reducing the occupancy rates or redesigning layouts, being the most impractical one, is as effective as 80% of the population getting a third boost.
keywords Spatiotemporal Modeling, Behavior Analytics, COVID-19 Spread, Agent-Based Simulation, COVID-19 Prevention
series SIGraDi
email
last changed 2023/05/16 16:55

_id ascaad2021_041
id ascaad2021_041
authors Taºdelen, Sümeyye; Leman Gül
year 2021
title Social Network Analysis of Digital Design Actors: Exploratory Study Covering the Journal Architectural Design
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 280-292
summary This research asks the question of how the design knowledge production mechanism is processed differentiates digital design actors from each other in the social media/professional and academic fields of architecture. Due to the broad nature of the research question, the study focuses on academia and academia-related media through prominent architect-authors and subject titles in the literature. Bourdieu’s concept of capital is introduced, in which cultural and symbolic capital are considered part of the production values of digital design actors. Digital design actors use image-based social media tools such as Instagram effectively. The paper uses two methods: the first is a bibliographical analysis of author-texts, and the second is a social network analysis. By employing the keyword-based search from the Web of Science database, this study has managed to extract papers with full records (citations, keywords, and abstracts), with the journal Architectural Design having most publications. Considering that both academicians and professionals contribute to publications in Architectural Design, we selected all its publications between 2010-2020 for bibliometric analysis. These analysis techniques include the bibliometric network analyses and social network analysis with the focus on visualizing the algorithms and statistical calculations of well-established metrics. The research reveals the most critical nodes of the bibliometric network by calculating the appropriate central metrics. The network formed by the selected Instagram accounts of digital design actors are shown to be a small-scale network group, while the hashtags of digital design concepts are more numerous than the digital design actors.
series ASCAAD
email
last changed 2021/08/09 13:11

_id ascaad2021_151
id ascaad2021_151
authors Allam, Samar; Soha El Gohary, Maha El Gohary
year 2021
title Surface Shape Grammar Morphology to Optimize Daylighting in Mixed-Use Building Skin
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 479-492
summary Building Performance simulation is escalating towards design optimization worldwide utilizing computational and advanced tools. Egypt has its plan and agenda to adopt new technologies to mitigate energy consumption through various sectors. Energy consumption includes electricity, crude oil, it encompasses renewable and non-renewable energy consumption. Egypt Electricity (EE) consumption by sector percentages is residential (47%), industrial (25%) and commercial (12%), with the remainder used by government, agriculture, public lighting and public utilities (4%). Electricity building consumption has many divisions includes HVAC systems, lighting, Computers and Electronics and others. Lighting share of electricity consumption can vary from 11 to 15 percent in mixed buildings as in our case study which definitely less that the amount used for HVAC loads. This research aims at utilizing shape morphogenesis on facades using geometric shape grammar to enhance daylighting while blocking longwave radiations causing heat stress. Mixed-use building operates in daytime more than night which emphasizes the objective of this study. Results evaluation is referenced to LEED v4.1 and ASHRAE 90.1-2016 window-to-wall ratio calibration and massive wall description. Geometric morphogenesis relies on three main parameters; Pattern (Geometry Shape Grammar: R1, R2, and R3), a reference surface to map from, and a target surface to map to which is the south-western façade of the case study. Enhancing Geo-morph rule is to guarantee flexibility due to the rotation of sun path annually with different azimuth and altitude angles and follow LEED V4.1 enhancements of opaque wall percent for building envelope.
series ASCAAD
email
last changed 2021/08/09 13:13

_id acadia20_220
doi https://doi.org/10.52842/conf.acadia.2020.2.220
last changed 2023/10/22 12:06

_id acadia20_148
doi https://doi.org/10.52842/conf.acadia.2020.2.148
last changed 2023/10/22 12:06

_id acadia20_236
doi https://doi.org/10.52842/conf.acadia.2020.2.236
last changed 2023/10/22 12:06

_id acadia20_202
doi https://doi.org/10.52842/conf.acadia.2020.2.202
last changed 2023/10/22 12:06

_id acadia20_226
doi https://doi.org/10.52842/conf.acadia.2020.2.226
last changed 2023/10/22 12:06

_id acadia20_232
doi https://doi.org/10.52842/conf.acadia.2020.2.232
last changed 2023/10/22 12:06

_id acadia20_176
doi https://doi.org/10.52842/conf.acadia.2020.2.176
last changed 2023/10/22 12:06

_id acadia20_124
doi https://doi.org/10.52842/conf.acadia.2020.2.124
last changed 2023/10/22 12:06

_id acadia20_192
doi https://doi.org/10.52842/conf.acadia.2020.2.192
last changed 2023/10/22 12:06

_id acadia20_164
doi https://doi.org/10.52842/conf.acadia.2020.2.164
last changed 2023/10/22 12:06

_id acadia20_214
doi https://doi.org/10.52842/conf.acadia.2020.2.214
last changed 2023/10/22 12:06

_id acadia20_154
doi https://doi.org/10.52842/conf.acadia.2020.2.154
last changed 2023/10/22 12:06

_id acadia20_108
doi https://doi.org/10.52842/conf.acadia.2020.2.108
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 45HOMELOGIN (you are user _anon_296822 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002