CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 732

_id ecaade2020_193
id ecaade2020_193
authors Alymani, Abdulrahman, Jabi, Wassim and Corcoran, Padraig
year 2020
title Machine Learning Methods for Clustering Architectural Precedents - Classifying the relationship between building and ground
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 1, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 643-652
doi https://doi.org/10.52842/conf.ecaade.2020.1.643
summary Every time an object is built, it creates a relationship with the ground. Architects have a full responsibility to design the building by taking the ground into consideration. In the field of architecture, using data mining to identify any unusual patterns or emergent architectural trends is a nascent area that has yet to be fully explored. Clustering techniques are an essential tool in this process for organising large datasets. In this paper, we propose a novel proof-of-concept workflow that enables a machine learning computer system to cluster aspects of an architect's building design style with respect to how the buildings in question relate to the ground. The experimental workflow in this paper consists of two stages. In the first stage, we use a database system to collect, organise and store several significant architectural precedents. The second stage examines the most well-known unsupervised learning algorithm clustering techniques which are: K-Means, K-Modes and Gaussian Mixture Models. Our experiments demonstrated that the K-means clustering algorithm method achieves a level of accuracy that is higher than other clustering methods. This research points to the potential of AI in helping designers identify the typological and topological characteristics of architectural solutions and place them within the most relevant architectural canons
keywords Machine Learning; Building and Ground Relationship; Clustering Algorithms; K-means cluster Algorithms
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id acadia23_v3_179
id acadia23_v3_179
authors Jabi, Wassim; Leon, David Andres; Alymani, Abdulrahman; Behzad, Selda Pourali; Salamoun, Michelle
year 2023
title Exploring Building Topology Through Graph Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Graph theory offers a powerful method for analyzing complex networks and relationships. When combined with machine learning, graph theory can provide valuable insights into the data generated by 3D models. This workshop integrated advanced spatial modeling and analysis with artificial intelligence, highlighting the importance of technological advancements in shaping the future of architecture and design. It introduced participants to novel workflows that link parametric 3D modeling with concepts of topology, graph theory, and graph machine learning. We used Topologicpy, an advanced spatial modeling and analysis software library designed for Architecture, Engineering, and Construction, paired with DGL, a powerful machine learning library that provides tools for implementing and optimizing graph neural networks (Figure 1). In essence, this process blends cutting-edge technologies and architectural principles that will shape the future of design. Participants learned how to use these workflows to convert 3D models into graphs, analyze their properties, and perform classification and regression tasks. Participants also explored how to create synthetic datasets based on generative and parametric workflows, and build and optimize graph neural networks for specific tasks.
series ACADIA
type workshop
last changed 2024/04/17 14:00

_id ecaade2020_190
id ecaade2020_190
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2020
title Smart Contracts for Decentralised Building Information Modelling
source Werner, L and Koering, D (eds.), Anthropologic: Architecture and Fabrication in the cognitive age - Proceedings of the 38th eCAADe Conference - Volume 2, TU Berlin, Berlin, Germany, 16-18 September 2020, pp. 565-574
doi https://doi.org/10.52842/conf.ecaade.2020.2.565
summary The paper presents a model for decentralizing building information modelling, through implementing its infrastructure using the decentralized web. We discuss the shortcomings of BIM in terms of its infrastructure, with a focus on tracing identities of design authorship in this collective design tool. In parallel we examine the issues with BIM in the cloud and propose a decentralized infrastructure based on the Ethereum blockchain and the Interplanetary filesystem (IPFS). A series of computing nodes, that act as nodes on the Ethereum Blockchain, host disk storage with which they participate in a larger storage pool on the Interplanetary Filesystem. This storage is made available through an API is used by architects and designers creating and editing a building information model that resides on the IPFS decentralised storage. Through this infrastructure central servers are eliminated, and BIM libraries and models can be shared with others in an immutable and transparent manner. As such Architecture practices are able to exploit their intellectual property in novel ways, by making it public on the internet. The infrastructure also allows the decentralised creation of a resilient global pool of data that allows the participation of computation agents in the creation and simulation of BIM models.
keywords Blockchain; decentralisation; immutability; resilience; Building Information Modelling
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2020_406
id sigradi2020_406
authors Lombardi, Davide; Dounas, Theodoros; Cheung, Lok Hang; Jabi, Wassim
year 2020
title Blockchain Grammars for Validating the Design Process
source SIGraDi 2020 [Proceedings of the 24th Conference of the Iberoamerican Society of Digital Graphics - ISSN: 2318-6968] Online Conference 18 - 20 November 2020, pp. 406-411
summary This paper presents and develops the concept of Decentralised Autonomous Organisation (DAO) as a platform for collaboration, via a design scenario in which Blockchain (BC) technology is implemented for validation purposes. The envisioned scenario simulates designers proposing multiple solutions for a given task and adopting shape grammars and environmental analysis and regulations as design drivers. Proposed solutions are uploaded, stored, presented, and evaluated in a DAO in which the decision process gets validated via the reputation of the participants and its governance system. This study lays the foundation and ignites the development of a larger framework in which design collaboration and competition are fostered and results secured, impacting design value and financial transactions.
keywords Shape grammar, Blockchain, Decentralised autonomous organisation, Design validation
series SIGraDi
email
last changed 2021/07/16 11:49

_id ecaade2024_47
id ecaade2024_47
authors Alymani, Abdulrahman Ahmed A
year 2024
title Integrating Artificial Intelligence Rendering Tools in Design: Integrating AI as teaching methods in architectural education
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 629–638
doi https://doi.org/10.52842/conf.ecaade.2024.2.629
summary This paper introduces an innovative teaching approach for architectural design studios, emphasizing the integration of AI-rendering tools to enhance student learning and creativity. The method begins with conventional site analysis, followed by an in-depth study of a micro-home case study to deepen understanding. Students’ progress from traditional 2D plans to conceptual 3D massing, facing challenges in integrating case studies into their designs. To address this, an AI-rendering engine is incorporated, allowing students to add intricate details and apply various case studies directly onto their 3D models. This visual approach aids understanding and application of architectural concepts. The paper discusses how this approach helps students overcome integration challenges and fosters creative exploration. Findings suggest that this method enriches architectural education, offering a new dimension to design studio learning.
keywords Architectural Pedagogy, AI-Rendering Tools, Architecture Precedents, Architecture Case Study, Design Studios
series eCAADe
email
last changed 2024/11/17 22:05

_id ascaad2016_003
id ascaad2016_003
authors Al-Jokhadar, Amer; Wassim Jabi
year 2016
title Humanising the Computational Design Process - Integrating Parametric Models with Qualitative Dimensions
source Parametricism Vs. Materialism: Evolution of Digital Technologies for Development [8th ASCAAD Conference Proceedings ISBN 978-0-9955691-0-2] London (United Kingdom) 7-8 November 2016, pp. 9-18
summary Parametric design is a computational-based approach used for understanding the logic and the language embedded in the design process algorithmically and mathematically. Currently, the main focus of computational models, such as shape grammar and space syntax, is primarily limited to formal and spatial requirements of the design problem. Yet, qualitative factors, such as social, cultural and contextual aspects, are also important dimensions in solving architectural design problems. In this paper, an overview of the advantages and implications of the current methods is presented. It also puts forward a ‘structured analytical system’ that combines the formal and geometric properties of the design, with descriptions that reflect the spatial, social and environmental patterns. This syntactic-discursive model is applied for encoding vernacular courtyard houses in the hot-arid regions of the Middle East and North Africa, and utilising the potentials of these cases in reflecting the lifestyle and the cultural values of the society, such as privacy, human-spatial behaviour, the social life inside the house, the hierarchy of spaces, the segregation and seclusion of family members from visitors and the orientation of spaces. The output of this analytical phase prepares the groundwork for the development of socio-spatial grammar for contemporary tall residential buildings that gives the designer the ability to reveal logical spatial topologies based on socio-environmental restrictions, and to produce alternatives that have an identity while also respecting the context, place and needs of users.
series ASCAAD
email
last changed 2017/05/25 13:13

_id ecaade2018_187
id ecaade2018_187
authors Chatzivasileiadi, Aikaterini, Hosney Lila, Anas M., Lannon, Simon and Jabi, Wassim
year 2018
title The Effect of Reducing Geometry Complexity on Energy Simulation Results
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 559-568
doi https://doi.org/10.52842/conf.ecaade.2018.2.559
summary Accuracy and time are metrics inherently associated with the design process and the energy performance simulation of buildings. The accurate representation of the building is an essential requirement for energy analysis, which comes with the expense of time; however, this is in contrast with the need to minimise the simulation time in order to make it compatible with design times. This is a particularly interesting aspect in the case of complex geometries, which are often simplified for use in building energy performance simulation. The effects of this simplification on the accuracy of simulation results are not usually reported. This paper explored these effects through a systematic analysis of several test cases. The results indicate that the use of orthogonal prisms as simplified surrogates for buildings with complex shapes presents a worst-case scenario that should be avoided where possible. A significant reduction of geometry complexity by at least 50% can also be achieved with negligible effects on simulation results, while minimising the time requirements. Accuracy, however, deteriorates rapidly below a critical threshold.
keywords Building performance simulation; Energy analysis; Geometry simplification
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2021_20
id sigradi2021_20
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Non-Fungible Building Components: Using Smart Contracts for a Circular Economy in the Built Environment
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1189–1198
summary The presented research study tackles the topic of economic and material sustainable development in the built environment and construction industry by introducing and applying the concept and the potential of Non-Fungible Tokens (NFTs) on blockchain within the early stages of the design process via the interface of common design software. We present a digital infrastructure layer for architectural assets and building components that can integrate with AEC supply chains, enabling a more effective and articulated development of circular economies. The infrastructure layer consists of a combination of topology graphs secured with a blockchain. The paper concludes with a discussion about the possibilities of material passports as well as circular economy and smart contracts as an infrastructure for whole lifecycle BIM and digital encapsulation of value in architectural design.
keywords Non-fungible tokens, Blockchain, Supply Chain, Building Representation, Circular Economy
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_376
id caadria2021_376
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Topology Generated Non-Fungible Tokens - Blockchain as infrastructure for a circular economy in architectural design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2021.2.151
summary The paper presents a new digital infrastructure layer for buildings and architectural assets. The infrastructure layer consists of a combination of topology graphs secured on a decentralised ledger. The topology graphs organise non-fungible digital tokens which each represent and correspond to building components, and in the root of the graph to the building itself.The paper presents background research in the relationship of building representation in the form of graphs with topology, of both manifold and non manifold nature. In parallel we present and analyse the relationship between digital representation and physical manifestation of a building, and back again. Within the digital representations the paper analyses the securing and saving of information on decentralised ledger technologies (such as blockchain). We then present a simple sample of generating and registering a non-manifold topology graph on the Ethereum blockchain as an EC721 token, i.e. a digital object that is unique, all through the use of dynamo and python scripting connected with a smart contract on the Ethereum blockchain. Ownership of this token can then be transferred on the blockchain smart contracts. The paper concludes with a discussion of the possibilities that this integration brings in terms of material passports and a circular economy and smart contracts as an infrastructure for whole-lifecycle BIM and digitally encapsulates of value in architectural designPlease write your abstract here by clicking this paragraph.
keywords Blockchain; Tokenisation; Topology; Circular Economy; decentralisation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_296
id ecaadesigradi2019_296
authors Dounas, Theodoros, Lombardi, Davide and Jabi, Wassim
year 2019
title Towards Blockchains for architectural design - Consensus mechanisms for collaboration in BIM
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 267-274
doi https://doi.org/10.52842/conf.ecaade.2019.1.267
summary We present a Blockchain collaboration mechanism on optimisation problems between distributed participants who work with building information modelling tools. The blockchain mechanism is capable of executing smart contracts, acting as a reward mechanism of independent designers attempting to collaborate or compete on optimising a design performance problem. Earlier work has described the potential integration through different levels of Computer Aided Design and Blockchain. We present an expanded version of that integration and we showcase how a team can collaboratively and competitively work, using BIM tools, through the blockchain. The original contribution of the paper is the use of the design optimisation performance as a consensus mechanism for block writing in blockchains. To accomplish that we introduce mechanisms for BIM to Blockchain Integration but also describe a special category of blockchains for architectural design and the built environment. The paper concludes with an analysis of the relationship between trust and values as encapsulated in the blockchain and how these could affect the design collaboration.
keywords Blockchain; BIM; agent; collaboration; competition
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ijac202119203
id ijac202119203
authors Dounas, Theodoros; Davide Lombardi, Wassim Jabi
year 2021
title Framework for decentralised architectural design BIM and Blockchain integration
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 157–173
summary The paper introduces a framework for decentralised architectural design in the context of the fourth industrial revolution. We examine first the constraints of building information modelling in regard to collaboration and trust. We then introduce Blockchain infrastructure as a means for creating new operational and business models for architectural design, through project governance, scaling collaboration nominally to thousands of agents, and shifting trust to the infrastructure rather than the architectural design team. Through a wider consideration of Blockchains in construction projects we focus on the design process and validate our framework with a prototype of BIM design optimisation integrated with a Blockchain mechanism. The paper concludes by outlining the contributions our framework can enhance in the building information modelling processes, within the context of the fourth industrial revolution.
keywords Blockchain, Building Information Modelling, trust, design collaboration, governance, Integrated Project Delivery, incentives, Ethereum
series journal
email
last changed 2024/04/17 14:29

_id ijac20064208
id ijac20064208
authors Garber, Richard; Jabi, Wassim
year 2006
title Control and Collaboration: digital fabrication strategies in academia and practice
source International Journal of Architectural Computing vol. 4 - no. 2, 121-143
summary The integration of digital tools currently being used in many schools and offices with Computer Numerically Controlled (CNC) hardware, has allowed architects to exert a far greater degree of control than they have previously been afforded. It is precisely this control that enables greater collaboration during design phases between architects and fabricators. However, the impact of this integration on academia and small practice is unknown. Several questions remain to be answered regarding teaching fabrication techniques and identifying strategies suitable for adoption in small firms. This paper investigates digital fabrication not as a software-specific set of capabilities, but as a design methodology that can allow schools to graduate young practitioners who can use these concepts to design and manage projects in more sophisticated ways. We outline six control and collaboration strategies and present several projects that explore those concepts through analog, digital, and hybrid methods.
series journal
last changed 2007/03/04 07:08

_id ecaade2016_006
id ecaade2016_006
authors Gomaa, Mohamed and Jabi, Wassim
year 2016
title Evaluating Daylighting Analysis of Complex Parametric Facades
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 147-156
doi https://doi.org/10.52842/conf.ecaade.2016.2.147
wos WOS:000402064400014
summary Lighting analysis tools have proven their ability in helping designers provide functional lighting, increase comfort levels and reduce energy consumption in buildings. Consequently, the number of lighting analysis software is increasing and all are competing to provide credible and rigorous analysis. The rapid adoption of parametric design in architecture, however, has resulted in complex forms that make the evaluation of the accuracy of digital analysis more challenging. This study aims to evaluate and compare the performance of daylighting analysis in two industry standard software (Autodesk Revit and 3ds Max) when analysing the daylighting of complex parametric façade patterns. The study has shown that, generally, both Revit and 3ds Max underestimate illuminance values when compared to physical scaled models. 3ds Max was found to outperform Revit when simulating complex parametric patterns, while Revit was found to outperform 3ds Max when simulating simple fenestration geometries. As a general conclusion, the rapid progress of parametric modelling, integrated with fabrication technologies, has made daylighting analysis of complex geometries more challenging. There is a need for more sophisticated algorithms that can handle the increased level of complexity as well as further verification studies to evaluate the accuracy claims made by software vendors.
keywords Daylighting analysis evaluation; Parametric patterns; Revit; 3ds Max; Complex façades
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia08_438
id acadia08_438
authors Hall, Theodore W.; Wassim Jabi; Katia Passerini; Cristian Borcea; Quentin Jones
year 2008
title An Interactive Poster System to Solicit Casual Design Feedback
source Silicon + Skin: Biological Processes and Computation, [Proceedings of the 28th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) / ISBN 978-0-9789463-4-0] Minneapolis 16-19 October 2008, 438-447
doi https://doi.org/10.52842/conf.acadia.2008.438
summary As part of a government funded grant in ubiquitous social computing, we have developed and deployed an interactive poster kiosk that invites casual feedback on student design work or other items of interest among peers in the School of Architecture. The system runs on a standard PC with a large LCD display and a touch-sensitive overlay. Posters reside in the system as web-page URIs. Passersby provide feedback on poster content by “finger painting” on the touch screen. The system e-mails the feedback to the poster provider. We have deployed the system in the Architecture Library for a period of three weeks. During that time, interaction with the kiosk passed through three general phases—unfamiliarity, novelty, and familiarity—with the peak interaction occurring during the middle phase. This paper describes the development and deployment of the system, the quantity and quality of the feedback it attracted, and concludes with recommendations for repeating and improving the exercise.
keywords Computation; Education; Feedback; Interactive; Social
series ACADIA
last changed 2022/06/07 07:50

_id 6430
authors Jabi, Wassim (Ed.)
year 2001
title ACADIA 2001 [Conference Proceedings]
source Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1/ Buffalo (New York) 11-14 October 2001, 415 p.
doi https://doi.org/10.52842/conf.acadia.2001
summary The theme, which preceded my knowledge of ACADIA’s true age, resulted from a realization regarding the development and current state of CAD in Research, Education, and Practice. While I only got involved with ACADIA in the last half of its current life to date, I had the honor of studying with some of the early pioneers of CAD: 1) Harold Borkin, a founding member of ACADIA, 2) Jim Turner, a longtime ACADIAn, and a past ACADIA Conference organizer (actually the very first conference I attended), and 3) Ted Hall, another longtime ACADIAn. What I have learned from conversations with them and later witnessed for myself is a fundamental shift of focus in CAD from building tools to using tools. That is, while early CAD students, including myself, used to learn how to create software and tools to solve a particular problem, the current focus in the majority of schools that include a CAD component in their curriculum is on teaching the use of commercial software and/or the use of digital media in the design studio. One need only take a look at old list of courses that used to be offered in the CAD area and compare it with a new list to see this shift. Yet, one form of tool building that is continuing in a significant number of schools is the creation of scripts or small software modules (usually built using a visual editor) to create interactive systems for delivery over the web or on CD-ROM. Examples include the use of Macromedia Director or Flash for creating interactive digital titles. While this current state of affairs has increased the receptivity to digital tools and media, it does obscure an important fact. For knowledge to advance in this area, we need researchers who can not only use tools, but also invent new ones to solve new problems that are not addressed by the existing crop of commercial software. The more time we spend not educating our students in the art and science of building digital tools, the harder it will be to: 1) find teachers in the future with those skills, 2) advance and influence the development of the state-of-the-art in CAD, and 3) erase the use of CAD as a euphemism for slick computer-generated imagery. While not common, the tradition of tool building is still going on most notably in architecture schools with strong financial resources and those that offer doctoral level education. Commercial, governmental and business/education entities are also continuing the research tradition of tool building. ACADIA, as a reflection of the field it focuses on, has widened its scope to solicit papers that deal with CAD education and the use of CAD in practice. Thus, you will read in this book papers that focus on all three aspects: research, education, and practice and in some cases the intersection of two or more of those areas. Thankfully, ACADIA, while concerned with CAD in education has maintained its receptivity to basic research papers as well as a willingness to publish innovative papers in the area of practice. As chair of the technical committee, I made sure that the call for papers and the final selection reflects this desire. We should continue to emphasize the need for presenting this diversity of work in our annual conferences and I am optimistic that the ACADIA community is in support of this notion.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

_id ddss9447
id ddss9447
authors Jabi, Wassim
year 1994
title An Outline of the Requirements for a Computer Supported Collaborative Design System
source Second Design and Decision Support Systems in Architecture & Urban Planning (Vaals, the Netherlands), August 15-19, 1994
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of specific rules and grammars. Yet, there is a general consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still cannot support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. Thus, if CAAD is to ultimately benefit the design process, it must (1) emulate and support the design team approach to architectural problem solving and (2) be deployed in the earliest possible stages of the design process. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the interaction between a set of requirements (the building program) and the architectural solution that satisfies them (the schematic design). The core of this interaction forms the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modelling (based on the NIAM notation), object-oriented algorithms, and distributed agents. Based on a literature survey and earlier findings on the role of artifacts in collaborative design, this paper outlines the requirements for the above system and reports on initial experiments. Thus, it constitutes the first stage of a research project that will lead to a full implementation of a distributed collaborative computer environment addressing the above issues.
series DDSS
type normal paper
email
last changed 2008/06/12 16:32

_id fb63
id fb63
authors Jabi, Wassim
year 1996
title An Outline of the Requirements for a Computer-Supported Collaborative Design System
source Open House International, vol 21, no 1, March 1996
summary Computer-Aided Architectural Design (CAAD) systems have adequately satisfied several needs so far. They have dramatically improved the accuracy and consistency of working drawings, enabled designers to visualize their design ideas in three-dimensions, allowed the analysis of designs through data exchange and integrated databases, and even allowed the designers to evaluate (and in some cases generate) designs based on comparisons to previous cases and/or the formalization of grammars. Yet, there is a consensus that CAAD systems have not yet achieved their full potential. First, most systems employ a single-user approach to solving architectural problems which fails to grapple with the fact that most design work is done through teamwork. Second, current systems still can not support early design stages which involve client briefing, data collection, building program formulation, and schematic design generation. This paper seeks to study remedies to both of the afore-mentioned limitations through focusing on the fundamental dialectic and collaborative nature of what is called designing: a concerned social activity that proceeds by creating architectural elements to address a set of requirements and their re-thinking as a result of architectural conjecture. To investigate this relationship, it is proposed to build a computer-supported collaborative design environment using the tools of conceptual modeling, object-oriented algorithms, and distributed agents. Based on findings regarding the role of artifacts in collaborative design and a literature survey, this paper concludes with an outline of the requirements for the above system.
series journal paper
type normal paper
email
last changed 2008/06/12 16:34

_id 3203
authors Jabi, Wassim
year 1999
title STUDIO@UB
source ACADIA Quarterly, vol. 18, no. 2, p. 1
doi https://doi.org/10.52842/conf.acadia.1999.x.g4q
summary Design can be thought of as a process of interpolation. In the face of incomplete and distorted conditions, the designer interjects solutions that interpolate and mediate the given situation. The Upper level Electronic Studio in the Spring term 1999 investigated the nature of interpolation and its relationship to process, space, and program. In particular, it investigated how virtual space can interpolate and augment physical space. The students also researched the multiplicity of meanings of interpolation such as: Insertion/interjection, estimation, linkage, mediation, transformation, and augmentation. The process of interpolation was then mapped into a real architectural problem: The re-design of Hayes and Crosby Halls as an integrated School of Architecture and Planning for the 21st century. Some students took advantage of the option to choose other sites and building programs.
series ACADIA
email
last changed 2022/06/07 07:49

_id acadia03_001
id acadia03_001
authors Jabi, Wassim
year 2003
title Digital Design
source Connecting >> Crossroads of Digital Discourse [Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-12-8] Indianapolis (Indiana) 24-27 October 2003, p. 16
doi https://doi.org/10.52842/conf.acadia.2003.x.a7r
summary Describing design as a sequence of steps cannot convey the complexity of social interactions that it embodies. Design is not merely a process, but a co-evolution of efforts and events in various places and times—both synchronous and asynchronous. Designers share their values, effort and expertise within design settings via artifacts that further the design process. Increasingly, these design settings in academia, research, and professional practice combine physical and virtual modalities such as immersion, projection, and a range of interaction technologies. Peter Anders has described such spaces as cybrids: hybrids that integrate virtual and physical space. In these settings, designers use overlapping physical and virtual artifacts and tools to arrive at a co-operative design resolution. Within collaborative design, these artifacts take on an additional role. As embodiments of design ideas and actions, they become media for communication. Donald Schon asserts that design should be considered a form of making, rather than primarily a form of problem solving, information processing or research. Indeed the line separating creation from design is becoming increasingly blurred. For the design artifact itself may become a part of the design proposal—its virtual presence incorporated within a cybrid structure or object. We may in the future see a proliferation of cybrid settings that support collaborative, digital design. The technologies for this already exist in collaborative tools, networked computing, scanning and immersive media. However, it will take a creative vision to see how these disparate tools and devices can integrate within the ideal design setting.
series ACADIA
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_958951 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002