CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 3344

_id acadia23_v3_207
id acadia23_v3_207
authors Doyle, Shelby; Bogosian, Biayna; Goldman, Melissa
year 2023
title ACADIA Cultural. History Fellowship
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The Association for Computer Aided Design in Architecture (ACADIA) launched the Cultural History Project in 2021 to mark the 40th anniversary of the organization and the 41st anniversary of the conference. This initiative has provided an opportunity to reflect upon the legacy and trends of the organization as a method for considering its future. The Cultural History Project began with an open-access digital archive of the organization’s Proceedings and Quarterlies and evolved into a larger discourse about how the ACADIA community values and promotes forms of computational knowledge. A summary essay included in the 2021 Proceedings (Image 2) reflects on what the archive reveals about ACADIA and its “habits”. Habits are settled tendencies or practices, especially ones that are difficult to relinquish. The term implies repetition, perhaps unconscious, that becomes normalized through its reiteration. The 2023 ACADIA Conference, “Habits of the Anthropocene,” marks the 43rd anniversary of the conference and the 42nd anniversary of ACADIA as an organization. What are the computational habits we need to identify, recall, question, break, and replace with new (or perhaps old) ways of thinking and working?
series ACADIA
email
last changed 2024/04/17 14:00

_id acadia23_v1_208
id acadia23_v1_208
authors Hünkar, Ertunç; Lee, Dave
year 2023
title Enhancing Construction of Complex Compression-Based Structures through Holographic-Assisted Assembly
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 208-213.
summary Compression-based stacking (Figure 1) structures, including arches and cantilevers, have long been essential elements in architecture and engineering. However, their construction poses challenges, particularly when dealing with extreme cantilevers and arched spans. Traditional building methods often rely on glue or fasteners, which can be impractical or unsuitable for certain compression-based structures. Constructing such structures without support requires precise alignment and careful weight distribution. To address these challenges, holographic building techniques have emerged as a promising alternative to traditional methods (Lok, Samaniego, and Spencer, 2021). By projecting virtual geometry during the assembly process, these techniques enable greater precision in alignment and weight distribution, enhancing stability and structural integrity. This research explores the use of holographic building techniques to construct compression-based structures (Figure 2 through 5). Computational tools are employed to parameterize the mathematical problem and simulate the structures in a virtual environment, enabling testing and iteration of different design options (Figure 6 through 9) before physical construction.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2021_300
id sigradi2021_300
authors Leiro, Manoela, Darzé, Júlia, Rios, Matheus and Lemos, Paulo
year 2021
title An Experience with the Use of a BIM Tool in the Thermal Environmental Comfort Discipline
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 889–900
summary This article presents a didactic experience carried out with the use of a BIM tool in the Thermal Environmental Comfort discipline of the graduate course in Architecture and Urbanism of a private Higher Education Institution in the city of Salvador-Bahia. Starting in 2020, students began designing solar protection devices using a geometric model in Revit. The method described in Annex I of the Technical Regulation on the Quality of Energy Efficiency Level in Residential Buildings (RTQ-R) was applied. The results obtained showed a better understanding by the students about the importance of correctly sizing solar protection devices for different orientations.
keywords BIM, Ensino, Conforto Ambiental Térmico
series SIGraDi
email
last changed 2022/05/23 12:11

_id acadia23_v3_189
id acadia23_v3_189
authors Leung, Pok Yin Victor; Huang, Yijiang
year 2023
title Task and Motion Planning for Robotic Assembly
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary When programming robotic assembly processes, it is often necessary to create a sequential list of actions. Some actions are robotic motions (requiring motion trajectory), and some are for controlling external equipment, such as grippers and fastening tools. The act of planning these actions and motion trajectories is called Task Planning and Motion Planning. Existing literature in robotics explored many different planning algorithms for planning a single trajectory to planning a complete sequence of tasks where continuity is maintained [Garrett et al, 2021]. Many application literature focused on the TAMP for service robots, medical robots, and self-driving cars, while there are few examples for architectural applications. For digital fabrication and automated construction, the planning method has to be adapted to the needs of architectural assemblies and the scale of construction [Leung et al, 2021]. Some of the unique challenges are the highly bespoke workpiece and assembly geometry, the large workpiece (e.g., long beams), and a dense collision environment. This three-day hybrid workshop addressed the needs of the architectural robotics community to use industrial robotic arms to assemble highly bespoke objects. The objects do not have any repetitive parts or assembly targets. The workshop leaders shared their experiences using industrial robots to construct large-scale timber structures. One of the most useful techniques is the recently published “Flowchart Planning Method,” where task sequence is planned using a flowchart, and motion trajectories are planned in a second pass [Huang et al, 2021].
series ACADIA
type workshop
last changed 2024/04/17 14:00

_id cdrf2021_316
id cdrf2021_316
authors N. Alima, R. Snooks, and J. McCormack
year 2021
title Bio Scaffolds
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_29
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary ‘Bio Scaffolds’ explores a series of design tectonics that emerge from a co-creation between human, machine and natural intelligences. This research establishes an integral connection between form and materiality by enabling biological materials to become a co-creator within the design and fabrication process. In this research paper, we explore a hybrid between architectural aesthetics and biological agency by choreographing natural growth through form. ‘Bio Scaffolds’ explores a series of 3D printed biodegradable scaffolds that orchestrate both Mycelia growth and degradation through form. A robotic arm is introduced into the system that can respond to the organism’s natural behavior by injecting additional Mycelium culture into a series of sacrificial frameworks. Equipped with computer vision systems, feedback controls, scanning processes and a multi-functional endeffector, the machine tends to nature by reacting to its patterns of growth, moisture, and color variation. Using this cybernetic intelligence, developed between human, machine, and Mycelium, our intention is to generate unexpected structural and morphological forms that are represented via a series of 3D printed Mycelium enclosures. ‘Bio Scaffolds’ explores an interplay between biological and computational complexity through non anthropocentric micro habitats.
series cdrf
email
last changed 2022/09/29 07:53

_id acadia23_v1_242
id acadia23_v1_242
authors Noel, Vernelle A.
year 2023
title Carnival + AI: Heritage, Immersive virtual spaces, and Machine Learning
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 242-245.
summary Built on a Situated Computations framework, this project explores preservation, reconfiguration, and presentation of heritage through immersive virtual experiences, and machine learning for new understandings and possibilities (Noel 2020; 2017; Leach and Campo 2022; Leach 2021). Using the Trinidad and Tobago Carnival - hereinafter referred to as Carnival - as a case study, Carnival + AI is a series of immersive experiences in design, culture, and artificial intelligence (AI). These virtual spaces create new digital modes of engaging with cultural heritage and reimagined designs of traditional sculptures in the Carnival (Noel 2021). The project includes three virtual events that draw on real events in the Carnival: (1) the Virtual Gallery, which builds on dancing sculptures in the Carnival and showcases AI-generated designs; (2) Virtual J’ouvert built on J’ouvert in Carnival with AI-generated J’ouvert characters specific; and (3) Virtual Mas which builds on the masquerade.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia23_v1_220
id acadia23_v1_220
authors Ruan, Daniel; Adel, Arash
year 2023
title Robotic Fabrication of Nail Laminated Timber: A Case Study Exhibition
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 220-225.
summary Previous research projects (Adel, Agustynowicz, and Wehrle 2021; Adel Ahmadian 2020; Craney and Adel 2020; Adel et al. 2018; Apolinarska et al. 2016; Helm et al. 2017; Willmann et al. 2015; Oesterle 2009) have explored the use of comprehensive digital design-to-fabrication workflows for the construction of nonstandard timber structures employing robotic assembly technologies. More recently, the Robotically Fabricated Structure (RFS), a bespoke outdoor timber pavilion, demonstrated the potential for highly articulated timber architecture using short timber elements and human-robot collaborative assembly (HRCA) (Adel 2022). In the developed HRCA process, a human operator and a human fabricator work alongside industrial robotic arms in a shared working environment, enabling collaborative fabrication approaches. Building upon this research, we present an exploration adapting HRCA to nail-laminated timber (NLT) fabrication, demonstrated through a case study exhibition (Figures 1 and 2).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia21_492
id acadia21_492
authors Römert, Olivia; Zboinska, Malgorzata A.
year 2021
title Aligning the Analog, Digital, and Hyperreal
doi https://doi.org/10.52842/conf.acadia.2021.492
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 492-501.
summary This work explores the relevance of photogrammetry-generated errors for contemporary architectural design. Unlike approaches featuring correction or elimination of such errors, this study demonstrates how they can be accommodated in the design process to expand its exploratory boundaries and emancipate the designer from the need of ultimate control. The work also highlights the relevance of software error explorations in the context of modern media culture theory and critical discourses on computer-generated imagery. By exploring the errors of photogrammetry, the study sought to highlight its potential as a creative exploration medium instead of a mere representation tool, using new interventions to an existing building as an experimental brief. Conducting the explorations within the philosophical framework of Jean Baudrillard's four orders of the image, and relating them to contrasting discourses, allowed to coin their most important creative and esthetic values. It revealed how surplus, leftover and undesirable data can be harnessed to provide a critical trajectory, through computation, to fields like historic preservation and adaptive reuse. The study concludes by proposing that photogrammetry errors, although distancing the digital representation from an accurate depiction of analog reality, do not deprive it of new meaning. Conversely, they generate new esthetic, spatial and functional qualities that uncover alternative, critical ways of architectural creation. Conducting error explorations in the context of philosophies debating the value of the real and hyperreal increases their discursive potential, legitimizing the agency of software errors in architectural computing.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id 1a52
authors Amor, R., Augenbroe, G., Hosking, J., Rombouts and W., Grundy, J.
year 1995
title Directions in modelling environments
source Automation in Construction 4 (3) (1995) pp. 173-187
summary Schema definition is a vital component in the computerised A/E/C projects. existing tools to manage this task are limited both in terms of the scope Of problems they can tackle and their integration with each other. This paper describes a global modellling and development environment for large modelling projects. This environment provides a total solution from initial design of schemas to validation, manipulation arid navigation through final models. A major benefit of the described system is the ability to provide multiple views of evolving schemas (or models) in both graphical and textual forms This allows modellers to visualise their schemas and instance models either textually or graphically as desired. The system automatically maintains the Conisistency of the informalion in these views even when modifications are made in other views. Simple and intuitive view navigation methods allow required information to he rapidly accessed. The environment supports strict checking of model instances and schemas in one of the major ISO-standardised modelling languages no used in product data technology. Ill this paper we show how such a modelling environment has been constructed for evaluation in the JOULE founded COMBINE project.
keywords Modelling Environment; Consistency; Multiple Views: Views; Building Models; Information Management; Integrated System; Product Modelling
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 14:33

_id 0ab2
authors Amor, R., Hosking, J., Groves, L. and Donn, M.
year 1993
title Design Tool Integration: Model Flexibility for the Building Profession
source Proceedings of Building Systems Automation - Integration, University of Wisconsin-Madison
summary The development of ICAtect, as discussed in the Building Systems Automation and Integration Symposium of 1991, provides a way of integrating simulation tools through a common building model. However, ICAtect is only a small step towards the ultimate goal of total integration and automation of the building design process. In this paper we investigate the next steps on the path toward integration. We examine how models structured to capture the physical attributes of the building, as required by simulation tools, can be used to converse with knowledge-based systems. We consider the types of mappings that occur in the often different views of a building held by these two classes of design tools. This leads us to examine the need for multiple views of a common building model. We then extend our analysis from the views required by simulation and knowledge-based systems, to those required by different segments of the building profession (e.g. architects, engineers, developers, etc.) to converse with such an integrated system. This indicates a need to provide a flexible method of accessing data in the common building model to facilitate use by different building professionals with varying specialities and levels of expertise.
series journal paper
email
last changed 2003/05/15 21:22

_id 295d
authors Amor, R.W., Hosking, J.G. and Mugridge, W.B.
year 1999
title ICAtect-II: a framework for the integration of building design tools
source Automation in Construction 8 (3) (1999) pp. 277-289
summary The development of a system capable of integrating a range of building design tools poses many challenges. Our framework for integrating design tools provides a structured approach, allowing individual parts to be developed independently. In this paper, we describe the overall framework and suggest a method for modeling and implementing each portion of the framework. Furthermore, we illustrate how such a system can integrate several design tools and be realized as a functional design system.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id caadria2021_250
id caadria2021_250
authors Aghaei Meibodi, Mania, Odaglia, Pietro and Dillenburger, Benjamin
year 2021
title Min-Max: Reusable 3D printed formwork for thin-shell concrete structures - Reusable 3D printed formwork for thin-shell concrete structures
doi https://doi.org/10.52842/conf.caadria.2021.1.743
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 743-752
summary This paper presents an approach for reusable formwork for thin-shell, double-sided highly detailed surfaces based on binder jet 3D printing technology. Using binder jetting for reusable formwork outperforms the milled and 3D printed thermoplastic formwork in terms of speed and cost of fabrication, precision, and structural strength against deformation. The research further investigated the synergy of binder jetting sandstone formwork with glass-fiber reinforced concrete (GFRC) to fabricate lightweight, durable, and highly detailed facade elements.We could demonstrate the feasibility of this approach by fabricating a minimal surface structure assembled from 32 glass-fiber reinforced concrete elements, cast with 4 individual formwork elements, each of them reused 8 times. By showing that 3D printed (3DP) formwork cannot only be used once but also for small series production we increase the field of economic application of 3D printed formwork. The presented fabrication method of formwork based on additive manufacturing opens the door to more individualized, freeform architecture.
keywords Binder Jet 3D Printing; 3D Printed Formwork; Reusable Formwork; Minimal Surface; GFRC (GRC)
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_006
id caadria2021_006
authors Agirachman, Fauzan Alfi and Shinozaki, Michihiko
year 2021
title VRDR - An Attempt to Evaluate BIM-based Design Studio Outcome Through Virtual Reality
doi https://doi.org/10.52842/conf.caadria.2021.2.223
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 223-232
summary During the COVID-19 pandemic situation, educational institutions were forced to conduct all academic activities in distance learning formats, including the architecture program. This act barred interaction between students and supervisors only through their computers screen. Therefore, in this study, we explored an opportunity to utilize virtual reality (VR) technology to help students understand and evaluate design outcomes from an architectural design studio course in a virtual environment setting. The design evaluation process is focused on building affordance and user accessibility aspect based on the design objectives that students must achieve. As a result, we developed a game-engine based VR system called VRDR for evaluating design studio outcomes modeled as Building Information Modeling (BIM) models.
keywords virtual reality; building information modeling; building affordance; user accessibility; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia21_328
id acadia21_328
authors Akbari, Mostafa; Lu, Yao; Akbarzadeh, Masoud
year 2021
title From Design to the Fabrication of Shellular Funicular Structures
doi https://doi.org/10.52842/conf.acadia.2021.328
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 328-339.
summary Shellular Funicular Structures (SFSs) are single-layer, two-manifold structures with anticlastic curvature, designed in the context of graphic statics. They are considered as efficient structures applicable to many functions on different scales. Due to their complex geometry, design and fabrication of SFSs are quite challenging, limiting their application in large scales. Furthermore, designing these structures for a predefined boundary condition, control, and manipulation of their geometry are not easy tasks. Moreover, fabricating these geometries is mostly possible using additive manufacturing techniques, requiring a lot of supports in the printing process. Cellular funicular structures (CFSs) as strut-based spatial structures can be easily designed and manipulated in the context of graphic statics. This paper introduces a computational algorithm for translating a Cellular Funicular Structure (CFS) to a Shellular Funicular Structure (SFS). Furthermore, it explains a fabrication method to build the structure out of a flat sheet of material using the origami/ kirigami technique as an ideal choice because of its accessibility, processibility, low cost, and applicability to large scales. The paper concludes by displaying a structure that is designed and fabricated using this technique.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_273
id caadria2021_273
authors Allam, Sammar and Alaçam, Sema
year 2021
title A Comparative Analysis of the Tool-Based versus Material-Based Fabrication Pedagogy in the Context of Digital Craft
doi https://doi.org/10.52842/conf.caadria.2021.2.011
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 11-20
summary This study presents the comparative analysis of two undergraduate courses which focus on introducing digital fabrication to design students. The duration of the compared courses are 5 weeks and 7 weeks respectively. The study employs action research methodology, while the theoretical lectures, weekly exercises, materials, fabrication tools and techniques, and students' outcomes were used as data sources. Particularly the material-based pedagogy and tool-based pedagogy of the compared courses are evaluated in relation with the tools, materials and techniques. The outcomes of the study is expected to provide insights for instructors and design students in the context of digital craft.
keywords Digital Craft; Fabrication Techniques; Design Pedagogy; Tool-Based Fabrication; Material-Based Fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id caadria2021_399
id caadria2021_399
authors Alsalman, Osama, Erhan, Halil, Haas, Alyssa, Abuzuraiq, Ahmed M. and Zarei, Maryam
year 2021
title Design Analytics and Data-Driven Collaboration in Evaluating Alternatives
doi https://doi.org/10.52842/conf.caadria.2021.2.101
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 101-110
summary Evaluation of design ideas is an important task throughout the life cycle of design development in the AEC industry. It involves multiple stakeholders with diverse backgrounds and interests. However, there is limited computational support which through this collaboration is facilitated, in particular for projects that are complex. Current systems are either highly specialized for designers or configured for a particular purpose or design workflow overlooking other stakeholders' needs. We present our approach to motivating participatory and collaborative design decision-making on alternative solutions as early as possible in the design process. The main principle motivating our approach is giving the stakeholders the control over customizing the data presentation interfaces. We introduce our prototype system D-ART as a collection of customizable web interfaces supporting design data form and performance presentation, feedback input, design solutions comparisons, and feedback compiling and presentation. Finally, we started the evaluation of these interfaces through an expert evaluation process which generally reported positive results. Although the results are not conclusive, they hint towards the need for presenting and compiling feedback back to the designers which will be the main point of our future work.
keywords Design Analytics; Collaboration; Visualizations
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 167HOMELOGIN (you are user _anon_590320 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002