CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 1375

_id ecaade2021_130
id ecaade2021_130
authors Alassaf, Nancy and Clayton, Mark
year 2021
title The Use of Diagrammatic Reasoning to Aid Conceptual Design in Building Information Modeling (BIM)
doi https://doi.org/10.52842/conf.ecaade.2021.2.039
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 39-48
summary Architectural design is an intellectual activity where the architect moves from the abstract to the real. In this process, the abstract represents the logical reasoning of how architectural form is configured or structured, while the real refers to the final physical form. Diagrams become an integral part of the conceptual design stage because they mediate between those two realms. Building Information Modeling (BIM) can reallocate the effort and time to emphasize conceptual design. However, many consider BIM a professionally-oriented tool that is less suitable for the early design stages. This research suggests that architectural design reasoning can be achieved using constraint-based parametric diagrams to aid conceptual design in BIM. The study examines several techniques and constructs a framework to use diagrams in the early design stages. This framework has been investigated through Villa Stein and Citrohan House by Le Corbusier. This study addresses two roles of diagrams: the generative role to create various design solutions and the analytical one to conduct an early performance study of the building. Our research contributes to the discussion on the ways designers can use digital diagrams to support the architectural design process.
keywords Building Information Modeling (BIM); Performance analysis ; Architectural Form; Diagram; Parametric modeling
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia21_258
id acadia21_258
authors Augustynowicz, Edyta; Smigielska, Maria; Nikles, Daniel; Wehrle, Thomas; Wagner, Heinz
year 2021
title Parametric design and multirobotic fabrication of wood facades
doi https://doi.org/10.52842/conf.acadia.2021.258
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 258-269.
summary The paper describes the findings of the applied research project by Institute Integrative Design (currently ICDP) HGK FHNW and ERNE AG Holzbau to design and manufacture prefabricated wooden façades in the collaborative design manner between architects and industry. As such, it is an attempt to respond to the current interdisciplinary split in the construction, which blocks innovation and promotes standardized inefficient building solutions. Within this project, we apply three innovations in the industrial setup that result in the integrated design-to-production process of individualized, cost-efficient and well-crafted façades. The collaborative design approach is a method in which architect, engineer and manufacturer start exchange on the early stage of the project during the collaborative design workshops. Digital design and fabrication tools enable architects to generate a large scope of façade variations within production feasibility of the manufacturer and engineers to prepare files for robotic production. Novel multi-robot fabrication processes, developed with the industrial partner, allows for complex façade assembly. This paper introduces the concept of digital craftsmanship, manifested in a mixed fabrication system, which intelligently combines automated and manual production to obtain economic feasibility and highest aesthetic quality. Finally, we describe the design and fabrication of the project demonstrator consisting of four intricate façades on a modular office building, inspired by local traditional solutions, which validate the developed methods and highlight the architectural potential of the presented approach.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ijac202119204
id ijac202119204
authors Castelo-Branco, Renata; Catarina Brás, António Menezes Leitao
year 2021
title Inside the Matrix: Immersive Live Coding for Architectural Design
source International Journal of Architectural Computing 2021, Vol. 19 - no. 2, 174–189
summary Algorithmic Design (AD) uses computer programs to describe architectural models. These models are visual by nature and, thus, greatly benefit from immersive visualization. To allow architects to benefit from the advantages of Virtual Reality (VR) within an AD workflow, we propose a new design approach: Live Coding in Virtual Reality (LCVR). LCVR means that the architect programs the design while immersed in it, receiving immediate feedback on the changes applied to the program. In this paper, we discuss the benefits and impacts of such an approach, as well as the most pressing implementation issues, namely the projection of the programming environment onto VR, and the input mechanisms to change the program or parts of it. For each, we offer a critical analysis and comparison of the various solutions available in the context of two different programming paradigms: visual and textual.
keywords Virtual Reality, Algorithmic Design, Live Coding, Programming Environments, Interaction Mechanisms
series journal
email
last changed 2024/04/17 14:29

_id caadria2021_415
id caadria2021_415
authors Chuang, Cheng-Lin and Chien, Sheng-Fen
year 2021
title Facilitating Architect-Client Communication in the Pre-design Phase
doi https://doi.org/10.52842/conf.caadria.2021.2.071
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 71-80
summary The process of architects exploring the program with clients often take place through face-to-face oral discussions and visual aids, such as photos and sketches. Our research focuses on two communication mediums: language and sketch. We employ machine learning techniques to assist architects and clients to improve their communication and reduce misunderstandings. We have trained a Naive Bayesian Classifier machine, the language assistant (LA), to classify architectural vocabularies with associations to design requirements. In addition, we have trained a Generative Adversarial Network, the sketch assistant (SA), to generate photo quality images based on architects' sketches. The language assistant and sketch assistant combined can facilitate architect-client communication during the pre-design stage.
keywords Architect-Client Communication; Pre-design; Architectural Programming; Machine Learning; Schematic Design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2021_187
id ecaade2021_187
authors Lacroix, Igor, Furtado Lopes, Gonçalo and Sousa, José Pedro
year 2021
title Integrating Sociological Survey and Algorithmic Modelling for Low-Cost Housing
doi https://doi.org/10.52842/conf.ecaade.2021.1.445
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 445-454
summary This paper presents a study developed in the scope of an ongoing research about the creation of an architectural design system of low-cost housing in Portugal's context. Its goal is to present the survey, analysis and digitization work of a research carried out in the 1960s by Portuguese architect Nuno Portas, with the help of architect Alexandre Alves Costa. The method was to convert mathematical information contained in Portas' and Alves Costa's report from Lisbon's National Laboratory of Civil Engineering (LNEC) into an algorithmic model with Rhinoceros® and Grasshopper® software. Besides revealing for the first time a comprehensive study of this pioneering work, this paper will set the foundations to propose the adaptation of its process into low-cost housing design. The result presented here is an algorithm for selecting the best architectural type from a database of housing floor plans, analyzed by a questionnaire regarding the inhabitants' needs and satisfactions.
keywords sociological survey; algorithmic modelling; low-cost housing; Nuno Portas; Alexandre Alves Costa
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia21_70
id acadia21_70
authors McAndrew, Claire; Jaschke, Clara; Retsin, Gilles; Saey, Kevin; Claypool, Mollie; Parissi, Danaë
year 2021
title House Block
doi https://doi.org/10.52842/conf.acadia.2021.070
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 70-75.
summary House Block was a temporary housing prototype in East London, UK from April to May 2021. The project constituted the most recent in a series of experiments developing Automated Architecture (AUAR) Labs’ discrete framework for housing production, one which repositions the architect as curator of a system and enables participants to engage with active agency. Recognizing that there is a knowledge gap to be addressed for this reconfiguration of practices to take form, this project centred on making automation and its potential for local communities tangible. This sits within broader calls advocating for a more material alignment of inclusive design with makers and 21st Century making in practice (see, for example, Luck 2018).

House Block was designed and built using AUAR’s discrete housing system consisting of a kit of parts, known as Block Type A. Each block was CNC milled from a single sheet of plywood, assembled by hand, and then post-tensioned on site. Constructed from 270 identical blocks, there are no predefined geometric types or hierarchy between parts. The discrete enables an open-ended, adaptive system where each block can be used as a column, floor slab, wall, or stair—allowing for disconnection, reconfiguration, and reassembly (Retsin 2019). The democratisation of design and production that defines the discrete creates points for alternative value systems to enter, for critical realignments in architectural production.

series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaade2021_291
id ecaade2021_291
authors Mondal, Joy
year 2021
title Differences between Architects' and Non-architects' Visual Perception of Originality of Tower Typology - Quantification of subjective evaluation using Deep Learning
doi https://doi.org/10.52842/conf.ecaade.2021.1.065
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 65-74
summary The paper presents a computational methodology to quantify the differences in visual perception of originality of the rotating tower typology between architects and non-architects. A parametric definition of the Absolute Tower Building D with twelve variables is used to generate 250 design variants. Subsequently, sixty architects and sixty non-architects were asked to rate the design variants, in comparison to the original design, on a Likert scale of 'Plagiarised' to 'Original'. With the crowd-sourced evaluation data, two neural networks - one each for architects and non-architects - were trained to predict the originality score of 15,000 design variants. The results indicate that architects are more lenient at seeing design variants as original. The average originality score by architects is 27.74% higher than the average originality score by non-architects. Compared to a non-architect, an architect is 1.93 times likelier to see a design variant as original. In 92.01% of the cases, architects' originality score is higher than non-architects'. The methodology can be used to capture and predict any subjective opinion.
keywords Originality; Visual perception; Crowd-sourced; Subjective evaluation; Deep learning; Neural network
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2021_121
id ecaade2021_121
authors Mondal, Joy
year 2021
title Eelish 2.0: Grasshopper Plugin for Automated Grid-Driven Column-Beam Placement on Orthogonal Floor Plans - Formalising manual workflow into an algorithm through empirical analysis
doi https://doi.org/10.52842/conf.ecaade.2021.1.427
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 427-436
summary The implicitly parametric if-else logic of determining column-beam locations is applied manually on virtually every orthogonal design, thereby inflating workhours and cost through unnecessary repetition of labour. This paper presents the development of a generative algorithm (developed as Grasshopper plugin Eelish 2.0) that automates the placement of column centre points and beam centre lines on orthogonal floor plans. The manual process of column-beam placement is formalised as the algorithm through empirical analysis of layouts drawn by architects. The placement is executed iteratively from the largest room to the smallest room. It is guided by local and/or global orthogonal grids that are generated using walls of other rooms and beams of rooms calculated till the previous iteration. The placements are controlled by the maximum and minimum allowed spans of slabs, and four modes of grid generations. The generated layouts have a qualitative 'Satisfactory' or better approval rating of 82.4% by architects and 88.4% by structural engineers.
keywords Column; Beam; Orthogonal; Floor Plan; Automated; Grid
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia21_502
id acadia21_502
authors Mytcul, Anna
year 2021
title ARchitect
doi https://doi.org/10.52842/conf.acadia.2021.502
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 502-511.
summary This research investigates gaming as a framework for design democratization in architecture, where the end user is the key decisionmaker in the design process. ARchitect is a multisensory game that promotes and explores the educational aspects of learning games and their influence on end user engagement with house co-design. This combinatorial game relies on an augmented reality (AR) application accessible through a smartphone, serving as a low-threshold tool for converting architectural drawings into 3D models in real time and using AR technology for design evaluation.

By allowing for learning through playing, ARchitect provides alternative ways of gaining knowledge about design and architecture and empowers non-experts to take active and informed positions in shaping their future urban environments on a micro-scale, rethinking conventional market relations and exploring emerging personal and public values. The ARchitect game challenges conventional participatory design where an architect plays an essential role in facilitation of the design process and translation of end users’ design proposals. In contrast, the proposed game system allows non-architect players to autonomously produce and access design solutions through embedded computational simulation by an AR application, thus giving an equal chance to non-professionals to express their design visions and become aware of potential implications of their ideas. By providing free access to the game contents through the ARchitect platform and a playful user experience by which design principles can be learned, this game will inspire the general public to engage in conversation about home design, eventually spreading architectural literacy to less-privileged communities.

series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2021_261
id caadria2021_261
authors Pei, Wanyu, Guo, Xiangmin and Lo, TianTian
year 2021
title Detecting Virtual Perception Based on Multi-Dimensional Biofeedback - A Method to Pre-Evaluate Architectural Design Objectives
doi https://doi.org/10.52842/conf.caadria.2021.2.183
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 183-192
summary In the information age, the attention to architectural design has gradually shifted from spatial aesthetics to the human's spatial experience. The situation of human perception becomes essential feedback information that designers can use to improve the design schemes. This research proposes an auxiliary method for pre-evaluating the architectural design goals and providing recommendations for architects to optimize the scheme. Specifically, by aggregating and quantitative analyzing electrophysiological signals and eye-tracking data, this research obtained the user's spatial perception with little effect of subjective consciousness as their feedback on the architectural environment. We took the campus outdoor space of an International School of Design as the research sample. By combining the architect's design concept and objectives, we constructed the contrast spatial schemes in virtual reality (VR) for users to experience and analyzed the usability of this method when pre-evaluate design objectives in a practical project.
keywords multi-dimensional biofeedback; architectural design objectives; pre-evaluation; virtual reality
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2021_065
id ecaade2021_065
authors Sdegno, Alberto and De Lorenzo, Andrea
year 2021
title Geometric Parametrization of a New Town - The case study of Lignano Pineta by Marcello D'Olivo
doi https://doi.org/10.52842/conf.ecaade.2021.1.537
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 537-544
summary This research focuses on the geometric analysis of a project by the architect Marcello D'Olivo, in which the role of parametrization could be a significant part.The first phase was an in-depth study of the compositional syntax of the author, in order to understand the rules adopted by him to design architectures. As he worked between 1950 and 1990, he didn't use digital software for the computation of his projects, but only traditional instruments.The second phase was a description of digital computational procedures to generate models using parametric software. The digitization of some morphologies designed by D'Olivo was converted in shape algorithms.So the aim of the research was to convert his analog procedures into a series of well-defined digital steps, in order to systematize a way to proceed to control complex forms and to attempt to build a bridge between the pencil projects of D'Olivo and parametric design.
keywords Geometric Parametrization; Shape grammar; Marcello D’Olivo
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2021_041
id ascaad2021_041
authors Taºdelen, Sümeyye; Leman Gül
year 2021
title Social Network Analysis of Digital Design Actors: Exploratory Study Covering the Journal Architectural Design
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 280-292
summary This research asks the question of how the design knowledge production mechanism is processed differentiates digital design actors from each other in the social media/professional and academic fields of architecture. Due to the broad nature of the research question, the study focuses on academia and academia-related media through prominent architect-authors and subject titles in the literature. Bourdieu’s concept of capital is introduced, in which cultural and symbolic capital are considered part of the production values of digital design actors. Digital design actors use image-based social media tools such as Instagram effectively. The paper uses two methods: the first is a bibliographical analysis of author-texts, and the second is a social network analysis. By employing the keyword-based search from the Web of Science database, this study has managed to extract papers with full records (citations, keywords, and abstracts), with the journal Architectural Design having most publications. Considering that both academicians and professionals contribute to publications in Architectural Design, we selected all its publications between 2010-2020 for bibliometric analysis. These analysis techniques include the bibliometric network analyses and social network analysis with the focus on visualizing the algorithms and statistical calculations of well-established metrics. The research reveals the most critical nodes of the bibliometric network by calculating the appropriate central metrics. The network formed by the selected Instagram accounts of digital design actors are shown to be a small-scale network group, while the hashtags of digital design concepts are more numerous than the digital design actors.
series ASCAAD
email
last changed 2021/08/09 13:11

_id cdrf2021_26
id cdrf2021_26
authors Yuqian Li and Weiguo Xu
year 2021
title Using CycleGAN to Achieve the Sketch Recognition Process of Sketch-Based Modeling
doi https://doi.org/https://doi.org/10.1007/978-981-16-5983-6_3
source Proceedings of the 2021 DigitalFUTURES The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021)

summary Architects usually design ideation and conception by hand-sketching. Sketching is a direct expression of the architect’s creativity. But 2D sketches are often vague, intentional and even ambiguous. In the research of sketch-based modeling, it is the most difficult part to make the computer to recognize the sketches. Because of the development of artificial intelligence, especially deep learning technology, Convolutional Neural Networks (CNNs) have shown obvious advantages in the field of extracting features and matching, and Generative Adversarial Neural Networks (GANs) have made great breakthroughs in the field of architectural generation which make the image-to-image translation become more and more popular. As the building images are gradually developed from the original sketches, in this research, we try to develop a system from the sketches to the images of buildings using CycleGAN algorithm. The experiment demonstrates that this method could achieve the mapping process from the sketches to images, and the results show that the sketches’ features could be recognised in the process.By the learning and training process of the sketches’ reconstruction, the features of the images are also mapped to the sketches, which strengthen the architectural relationship in the sketch, so that the original sketch can gradually approach the building images, and then it is possible to achieve the sketch-based modeling technology.
series cdrf
email
last changed 2022/09/29 07:53

_id sigradi2021_287
id sigradi2021_287
authors Zauk, Fernando, Luz, Louise, Pires, Janice and Silva, Adriane Borda Almeida da
year 2021
title (Parametric) Cinematography of Kogan’s Architecture: A Learning Object
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 713–724
summary This study describes the development of a learning object to introduce parametric design techniques together with design action. It identifies in Kogan's architecture appropriate design strategies to configure parametric exercises, such as controlling the types of dynamic textures derived from the effects of light and shadows produced by cobogós. An exercise that considers time and movement, references associated with the architect's cinematographic practices. To develop the object, we started with the interpretation of the knowledge structures involved: from knowledge itself (theories and technologies that identify connections between architecture, cinema, and the concept of parametry) to know-how (a visual programming capable of instrumentalizing for the referred control, by means of parametric design techniques). It was about making available and experiencing this structure, in a teaching/learning process, interpreted as a game that allows us to highlight Kogan's purposes in promoting multisensory experiences with the space of architecture.
keywords representaçao, projeto, Marcio Kogan, cobogó, objeto de aprendizagem, desenho paramétrico
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_001
id caadria2021_001
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 2
doi https://doi.org/10.52842/conf.caadria.2021.2
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 764 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2021_000
id caadria2021_000
authors A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.)
year 2021
title CAADRIA 2021: Projections, Volume 1
doi https://doi.org/10.52842/conf.caadria.2021.1
source PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, 768 p.
summary Rapidly evolving technologies are increasingly shaping our societies as well as our understanding of the discipline of architecture. Computational developments in fields such as machine learning and data mining enable the creation of learning networks that involve architects alongside algorithms in developing new understanding. Such networks are increasingly able to observe current social conditions, plan, decide, act on changing scenarios, learn from the consequences of their actions, and recognize patterns out of complex activity networks. While digital technologies have already enabled architecture to transcend static physical boxes, new challenges of the present and visions for the future continue to call for both innovative responses integrating emerging technologies into experimental architectural practice and their critical reflection. In this process, the capability of adapting to complex social and environmental challenges through learning, prototyping and verifying solution proposals in the context of rapidly shifting realities has become a core challenge to the architecture discipline. Supported by advancing technologies, architects and researchers are creating new frameworks for digital workflows that engage with new challenges in a variety of ways. Learning networks that recognize patterns from massive data, rapid prototyping systems that flexibly iterate innovative physical solutions, and adaptive design methods all contribute to a flexible and networked digital architecture that is able to learn from both past and present to evolve towards a promising vision of the future.
series CAADRIA
last changed 2022/06/07 07:49

_id ascaad2021_000
id ascaad2021_000
authors Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.)
year 2021
title ASCAAD 2021: Architecture in the Age of Disruptive Technologies - Transformation and Challenges
source Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021.
summary The ASCAAD 2021 conference theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration. We have encouraged researchers and scholars in the CAAD community to identify relevant visions and challenging aspects such as: from the tangible to the intangible, from the physical to the phenomenological, from mass production to mass customization, from the artifact-centered to the human-centered, and from formalistic top-down approaches to informed bottom-up approaches. A parallel evolving impact in the field of computational design and innovation is the introduction of disruptive technologies which are concurrently transforming practices and businesses. These technologies tend to provoke multiple transformations in terms of processes and workflows, methodologies and strategies, roles and responsibilities, laws and regulations, and consequently formulating diverse emergent modes of design thinking, collaboration, and innovation. Technologies such as mixed reality, cloud computing, robotics, big data, and Internet of Things, are incessantly changing the nature of the profession, inciting novel modes of thinking and rethinking architecture, developing new norms and impacting the future of architectural education. With this booming pace into highly disruptive modes of production, automation, intelligence, and responsiveness comes the need for a revisit of the inseparable relation between technology and the humanities, where it is possible to explore the urgency of a pressing dialogue between the transformative nature of the disruptive on the one hand and the cognitive, the socio-cultural, the authentic, and the behavioral on the other.
series ASCAAD
last changed 2022/05/19 11:45

_id ascaad2021_118
id ascaad2021_118
authors Abdelmohsen, Sherif; Passaint Massoud
year 2021
title Material-Based Parametric Form Finding: Learning Parametric Design through Computational Making
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 521-535
summary Most approaches developed to teach parametric design principles in architectural education have focused on universal strategies that often result in the fixation of students towards perceiving parametric design as standard blindly followed scripts and procedures, thus defying the purpose of the bottom-up framework of form finding. Material-based computation has been recently introduced in computational design, where parameters and rules related to material properties are integrated into algorithmic thinking. In this paper, we discuss the process and outcomes of a computational design course focused on the interplay between the physical and the digital. Two phases of physical/digital exploration are discussed: (1) physical exploration with different materials and fabrication techniques to arrive at the design logic of a prototype panel module, and (2) deducing and developing an understanding of rules and parameters, based on the interplay of materials, and deriving strategies for pattern propagation of the panel on a façade composition using variation and complexity. The process and outcomes confirmed the initial hypothesis, where the more explicit the material exploration and identification of physical rules and relationships, the more nuanced the parametrically driven process, where students expressed a clear goal oriented generative logic, in addition to utilizing parametric design to inform form finding as a bottom-up approach.
series ASCAAD
email
last changed 2021/08/09 13:13

_id ascaad2021_017
id ascaad2021_017
authors Abouhadid, Mariam
year 2021
title Affective Computing in Space Design: A Review of Literature of Emotional Comfort Tools and Measurements
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 330-340
summary Architecture Digital Platforms are capable of creating buildings that provide comfort that meets human thermal, acoustic and visual needs. However, some building technologies can choose the physical energy arena of the building on the expense of the mentioned aspects of human comfort. Nevertheless, aspects like emotional and psychological human comfort exist in limited studies practiced in interior design, or in active design of public spaces and on the landscape and urban scale. It is not mandatory in building design: How different spaces affect humans and what makes an environment stressful or not. Study gathers literature theoretically and categorizes it per topic: 1) Affective computing Introduction and uses, 2) Human responses to different stimulus and environments, 3) Factors that affect humans, 4) Technologies like brain imaging and Galvanic Skin Response (GSR) that are used to measure human anxiety levels, as well as blood pressure and other indications on the person’s well-being, and some 5) Case Studies. Affective computing can be an addition to different pre- design analysis made to a project. Different areas of comfort like space dimensions, height, colour and shape can be the start of coding “Human Comfort” analysis software. Study has been restricted to previous research, and can be expanded further to experimentation. Future work aims to code it into Building Information Modelling Software.
series ASCAAD
email
last changed 2021/08/09 13:11

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
doi https://doi.org/10.52842/conf.acadia.2021.530
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 68HOMELOGIN (you are user _anon_146997 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002