CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 4999

_id caadria2022_157
id caadria2022_157
authors Liu, Sijie, Wei, Ziru and Wang, Sining
year 2022
title On-site Holographic Building Construction: A Case Study of Aurora
doi https://doi.org/10.52842/conf.caadria.2022.2.405
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 405-414
summary Geometrically complex building components‚ reliance on high-touch implementation often results in tedious information reprocessing. Recent use of Mixed Reality (MR) in architectural practices, however, can reduce data translation and potentially increase design-to-build efficiency. This paper uses Aurora, a single-story residential building for 2021 China‚s Solar Decathlon Competition, as a demonstrator to evaluate the performance of on-site holographic building construction. This paper firstly reviews recent studies of MR in architectural design and practice. It then describes an MR-aided construction process of Aurora's non-standard building envelope and rooftop mounting structure, where in-situ holographic registration, human-machine cooperation, and as-built analysis are discussed. This paper concludes by stating that MR technologies provide unskilled implementers with a handy approach to materialise complex designs. The research was guided by the UN Sustainable Development Goals, especially aligning with the GOAL 9 which seeks innovations in industry and infrastructure.
keywords Mixed Reality, Non-standard Architecture, Low-tech Construction, Solar Decathlon Competition, SDG 9
series CAADRIA
email
last changed 2022/07/22 07:34

_id ecaade2021_009
id ecaade2021_009
authors Majzoub, Omar and Haeusler, M. Hank
year 2021
title Investigating Computational Methods and Strategies to Reduce Construction and Demolition Waste in Preliminary Design
doi https://doi.org/10.52842/conf.ecaade.2021.1.325
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 1, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 325-334
summary The waste produced in construction and demolition presents social, economic, and environmental challenges on a global scale. Research suggests that effective decision-making mechanisms are needed during preliminary design stages to minimise the production of waste. In early research, we presented a beta version of a waste reduction tool which is now in need of a User Experience (UX) and Interaction Experience (IX) strategy to meet our research aims of (a) supporting architects in making informed decisions and (b) offer general as well a specific design optimisation to reduce waste. Thus in our research, we arrived at a point that required an investigation into computational methods and strategies to meet these aims. While optimisation and decision-making in architecture are often achieved through generative design strategies, we aim to investigate and discuss alternatives. Thus we propose the hypothesis of employing augmented intelligence. The paper presents work in augmented intelligence undertaken outside the architecture discipline and presents our literature review with a discussion and conclusion.
keywords Waste reduction; computational methods and strategies; sustainable development goals; augmented intelligence; position paper
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2021_326
id ecaade2021_326
authors Chan, Holly, Brown, Andre, Moleta, Tane and Schnabel, Marc Aurel
year 2021
title Augmented Spaces - If walls could talk
doi https://doi.org/10.52842/conf.ecaade.2021.2.575
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 575-584
summary This paper explores the development of Augmented Spaces that involve embedding within the built environment, digitally responsive recognition of human presence. Contemporary digital media provides the opportunity to enhance physical space with the property of immediate interaction, which results in a high level of user engagement and responsivenenss. Through the addition of digital media, emotional and reflective value can be added to the built form. If space is designed to be reactive, rather than passive, a dialogue can be established between the user/inhabitant and the environment. We report on the establishment and analysis of a set of prototype digital interventions in urban space that react to human presence. One is in a building threshold space; one an urban street. We describe the development of a digital particle system with two inputs; the first being the geometry that generates the particles and the second being the geometry that displaces the particles. The research goals that we report on are driven by three over-riding response criteria, Visceral, Behavioural and Reflective.
keywords augmented space; reactive; synesthetic
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2021_160
id caadria2021_160
authors Ding, Jie and Xiang, Ke
year 2021
title The influence of spatial geometric parameters of Glazed-atrium on office building energy consumption in the hot summer-warm winter region of China
doi https://doi.org/10.52842/conf.caadria.2021.1.391
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 391-400
summary To investigate the influence of the spatial geometric parameters of glazed-atrium on building energy consumption, this study established a prototypical office building model in the hot summer-warm winter region in China, and simulated the effect of energy consumption of six selected factors based on orthogonal experimental design (OED). Through the statistical analysis, the results showed that the floor height and the skylight-roof ratio were the most important parameters affecting the total energy consumption, with the contribution rates of 55.5% and 18.2%, followed by the section shape parameter and the plane orientation. In addition, the floor height and the section shape parameter were closely related to the cooling load and the lighting load, respectively, and both energy consumption could be reduced to a lower degree when the atrium inner interface window-wall ratio was 60%. Finally, the optimized parameter combination and energy-saving design strategies were proposed. This study provides architects with a simplified energy evaluation of atrium spatial geometric parameters in the early design stage, and it has an important guiding significance for the sustainable development of office buildings in the future.
keywords Energy consumption; Spatial geometric factors; Glazed atrium; Office building; Hot summer–warm winter region
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_20
id sigradi2021_20
authors Dounas, Theodoros, Jabi, Wassim and Lombardi, Davide
year 2021
title Non-Fungible Building Components: Using Smart Contracts for a Circular Economy in the Built Environment
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1189–1198
summary The presented research study tackles the topic of economic and material sustainable development in the built environment and construction industry by introducing and applying the concept and the potential of Non-Fungible Tokens (NFTs) on blockchain within the early stages of the design process via the interface of common design software. We present a digital infrastructure layer for architectural assets and building components that can integrate with AEC supply chains, enabling a more effective and articulated development of circular economies. The infrastructure layer consists of a combination of topology graphs secured with a blockchain. The paper concludes with a discussion about the possibilities of material passports as well as circular economy and smart contracts as an infrastructure for whole lifecycle BIM and digital encapsulation of value in architectural design.
keywords Non-fungible tokens, Blockchain, Supply Chain, Building Representation, Circular Economy
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_56
id sigradi2021_56
authors Duclos-Prevet, Claire, Guena, François and Effron, Mariano
year 2021
title Constrained Multi-Criteria Optimization for Integrated Design in Professional Practice
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 29–40
summary To design sustainable architecture, theory encourages architects to rely on automated exploration processes. In practice, the problems encountered are often multicriteria and under constraint. This paper compares different constraint handling strategies, approachable to designer, for processes involving evolutionary algorithms. Four methods are tested on a case study from professional practice. Two methods rely on parametric models: the penalty function method and the use of hyperparameters. The others involve the use of generative techniques: a rule-based method and a repair algorithm that takes the form of an agent-based model. This study highlights the significant impact of the choice of the constraint management method on exploration performance. Among other results, it appears that models involving the use of generative techniques are more efficient than those using parametric models. This calls for the development of dedicated tools.
keywords building enveloppe design, generative design, agent-based modeling, multiobjective genetic algorithm, daylighting simulation
series SIGraDi
email
last changed 2022/05/23 12:10

_id ascaad2021_138
id ascaad2021_138
authors Elkhateeb, Samah; Manal El-Shahat
year 2021
title A Roadmap for Smart City in the Arab Region - A Paradigm Shift in Post-Pandemic Era
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 317-328
summary A radical and rapid change in the world in the time of COVID19 pandemic powerfully brings the new era of digitalisation, and the 4th generation of the industrial revolution of Internet of Things (IoT) into practice. This raises many questions regarding the future smart city’s development in Arab region: Are our cities ready for such a rapid transformation towards this digital era? Do cities have adequate infrastructure for this? What are the guidelines required to achieve Smart City (SC) models in the Arab region? The aim of this research is to assess the status quo of the new developed cities in the Arab region as models of smart cities and indicate the factors that prove their maturity and readiness for the future digital transformation in the post-pandemic era. The research methodology is an application tool on two case studies, to prove that the features and characteristics of the existing on-ground initiatives and programmes support the digitalisation movement in these two cities. The research findings are a paving roadmap for the decision makers towards efficiently functioning models for sustainable SCs in the Arab region.
series ASCAAD
email
last changed 2021/08/09 13:13

_id sigradi2021_208
id sigradi2021_208
authors Eloah, Adriane, Queiroz, Natália and Coelho, Leonardo
year 2021
title Parametric Urbanism: Multi-Criteria Optimization for a Sustainable Neighborhood in Sao José Dos Campos
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 351–362
summary Based on the concepts of Sustainable Urbanism and performance-based design, this work proposes the development of a neighborhood in the city of Sao José dos Campos (SJC), Sao Paulo-Brazil. The performance-based design method was used through parametric algorithmic tools - such as Grasshopper - for construction, analysis and the urban design multicriteria optimization. Five optimization functions were used: walkability, sunset view, radiation in hot periods, minimum hours of sun exposition and maximum number of floors. The use of optimization software accommodates the numerous conflicting requirements of the model. The results obtained are a systematization of the process and a system that allows various urban solutions based on numerical performance criteria. The selected solutions achieved walkability indicators greater than 80%.
keywords Urbanismo paramétrico, Urbanismo Sustentável, otimizaçao, sustentabilidade, Performance-based design
series SIGraDi
email
last changed 2022/05/23 12:10

_id caadria2021_391
id caadria2021_391
authors Elshani, Diellza, Koenig, Reinhard, Duering, Serjoscha, Schneider, Sven and Chronis, Angelos
year 2021
title Measuring Sustainability and Urban Data Operationalization - An integrated computational framework to evaluate and interpret the performance of the urban form.
doi https://doi.org/10.52842/conf.caadria.2021.2.407
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 407-416
summary With rapid urbanization, the necessity for sustainable development has skyrocketed, and sustainable urban development is a must. Recent advances in computing performance of urban layouts in real-time allow for new paradigms of performance-driven design. As beneficial as utilizing multiple layers of urban data may be, it can also create a challenge in interpreting and operationalizing data. This paper presents an integrated computational framework to measure sustainability, operationalize and interpret the urban forms performance data using generative design methods, novel performance simulations, and machine learning predictions. The performance data is clustered into three pillars of sustainability: social, environmental, and economical, and it is followed with the performance space exploration, which assists in extracting knowledge and actionable rules of thumb. A significant advantage of the framework is that it can be used as a discussion table in participatory planning processes since it could be easily adapted to interactive environments.
keywords generative design; data interpretation ; urban sustainability; performance simulation; machine learning
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2021_176
id sigradi2021_176
authors Escaleira, Cláudia, Morais, António, Figueiredo, Bruno and Cruz, Paulo
year 2021
title Reuse of Ceramic Roof Tiles: Enhancing New Functional Design Possibilities Through the Integration of Digital Tools for Simulation, Manufacture and Assembly
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1475–1486
summary The material qualities of ceramic roof tiles have provided new formal interpretations that induced a new functional use—a wall. By disassembling ceramic roof tiles from roofs and assembling them into walls, its circularity potential was enlarged. This paper explores the potential use of ceramic roof tiles, as a single element type, in the definition of wall design systems and patterns of composition that comply with design for manufacture, assembly and disassembly (DfMA-D) requirements, through the development of a shape grammar and implementation through parametric models. The new shape grammar extends the compositional patterns already produced and the redefinition of the connection systems by incorporating DfMA-D requirements into the shape grammar rules sets new combinatorial patterns aligned with European Union goals for building circularity. The parametric models automate the generation of design solutions and extend the design process to the assembly and disassembly stages using robotic fabrication techniques.
keywords circular building, component reuse, computational design, ceramic roof tiles, robotics in architecture
series SIGraDi
email
last changed 2022/05/23 12:11

_id ecaade2021_115
id ecaade2021_115
authors Foged, Isak and Hilmer, Jacob
year 2021
title Fiber Compositions - Development of wood and textile layered structures as a material strategy for sustainable design
doi https://doi.org/10.52842/conf.ecaade.2021.2.443
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 443-452
summary This study examines composite compositions based on fiber-based materials. It focuses on organic textiles of Jute, Hemp, Wool, Flax, and Glass fiber as a synthetic textile, combined with the lightweight wood species Paulownia. By creating novel composites, the study aims to investigate methods and generate design knowledge for material strategies to improve and reduce material waste in the built environment, further enabled by the use of small elements that can be sourced from waste wood and reclaimed wood. Research is conducted as a hybrid material-computational methodology, developing and testing probes, prototypes and a full-scale demonstrator assembly in the form of a wall seating composition. The results find that the proposed method and resulting composites have significant potentials for both expressive and functional characteristics, allowing tectonic articulation to be made, while creating minimum material structures based on assembly of small elements to larger complex curvature building parts.
keywords Wood; Textile; Composite; Computational Design; Environmental Design
series eCAADe
email
last changed 2022/06/07 07:51

_id sigradi2021_197
id sigradi2021_197
authors Landenberg, Raquel, Hernandez, Silvia Patricia, Pochini, Olga and Boccolini, Sara M.
year 2021
title From Digital to Real: Inmotics and Parametricism for Urban Transformation
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1005–1016
summary Our research team develops sustainable and inclusive typologies of micro-architecture. These micro-architectures, aided by cutting-edge technologies, give room to more inclusiveness and functional-ductility. We are convinced that nothing is static, there is not just a single possible future. Because of that, we generate real/virtual architectures that do not respond only to a single type of user, place or use. In this case, we introduce a typological model focused on health and wellness services, currently under development by parametric design. Located in the city of Córdoba, Argentina and placed near public parks (where many citizens practice sports and recreational outdoor activities)). We use energy-efficient local technology to power devices that adapt to local weather; moreover, the equipment provides performance data via audio, visual and tactile outputs, and in adjustable-position devices.
keywords Palabras clave. Inmótica, inclusividad, microarquitectura, ductilidad, sutentabilidad
series SIGraDi
email
last changed 2022/05/23 12:11

_id sigradi2021_102
id sigradi2021_102
authors Miranda de Oliveira, Antônio Roberto and Amaral, Lucas
year 2021
title Design and Digital Manufacturing: Changes and Challenges in Product Development in the Context of Remote Learning
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1345–1357
summary Context: This paper presents the results of the Digital Fabrication discipline in the Bachelor of Design course at CESAR School/Recife through remote education due to the need for social distance due to the pandemic by COVID-19. Purpose: Thus, this study provides a case report of the results achieved through the use of technological tools for product development, demonstrating how these technologies can contribute to the involvement of students in the processes of creation, production and innovation. Approach: This article seeks to bring to light the approach of Design methodologies, the importance of digital manufacturing techniques and rapid prototyping through additive manufacturing, as well as the aspects of product development aimed at human well-being and social innovation. Results: The results were positive, providing insights into the students' perception, goals achieved and practical activities accomplished in the context of remote education in the Design graduation course.
keywords Design inclusivo, Bioinspirado, Fabricaçao digital, Ensino remoto
series SIGraDi
email
last changed 2022/05/23 12:11

_id ascaad2021_049
id ascaad2021_049
authors Ramadan, Ayah
year 2021
title Double Green Façades using Parametric Sustainable Design: A Simulation Tools with Parametric Approach to Improve Energy Performance of Office Buildings in Egypt
source Abdelmohsen, S, El-Khouly, T, Mallasi, Z and Bennadji, A (eds.), Architecture in the Age of Disruptive Technologies: Transformations and Challenges [9th ASCAAD Conference Proceedings ISBN 978-1-907349-20-1] Cairo (Egypt) [Virtual Conference] 2-4 March 2021, pp. 727-741
summary Parametric Sustainable design of the indoor environment of double green façades buildings focus on the development of office building structure in Egypt and achieved indoor thermal comfort at a low level of energy use. The goal of this paper is to study parametric design from a wide perspective in order to classify its advantages and evaluate its skill to support Sustainable design. As building construction sector is the largest energy consumer, Operation hours of air conditioners is speedily increasing in the office buildings area through summer season, which already accounts for 50% of energy consumption in Egypt. This study was carried out based on the simulation in Design Builder (6) software. The case, studied in the article is for office building, newly erected building with surface area of 25, 500 m2 is considered as the basis for the parametric Sustainable study. The new energy model was simulated resulting in about 70% in HVAC consumption and approximately 75% for whole building energy consumption. Analysis results showed that parametric optimization of building envelope at the design stage is a practicable approach to reducing energy consumption in office building design.
series ASCAAD
email
last changed 2021/08/09 13:11

_id caadria2021_192
id caadria2021_192
authors Ray Choudhury, Surjyatapa
year 2021
title PUCCA 5.0 - A framework for a digital system to aid informal self-construction
doi https://doi.org/10.52842/conf.caadria.2021.1.703
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 703-712
summary Assisted self-construction has been proclaimed by the UN Habitat as one of the most affordable methods of providing sustainable housing. Self-construction in informal settlements is analogous with incremental development, where design and construction occur in simultaneous waves. However, unassisted self-construction often produces housing of substandard quality owing to a lack of knowledge and resources. This paper hypothesizes that the core factor leading to substandard housing in informal self-construction is an information and communication gap in the existing process. In order to identify the gap, a mapping and analysis exercise is carried out that identifies the focal points where the informal system deviates from the formal, the decisions that influence these deviations, and the impact of these deviations on the overall output. The paper develops the framework for a smartphone-based, digital technical aid system, that fills this information and communication gap and provides construction guidance to owner-builders without compromising the nonlinear nature of incremental development.
keywords Informal Construction; Self-Construction; Digital Technical Assistance; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia21_292
id acadia21_292
authors Schumann, Kyle; MacDonald, Katie
year 2021
title Pillow Forming
doi https://doi.org/10.52842/conf.acadia.2021.292
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 292-301.
summary Recent decades have seen the development of increasingly powerful digital modeling and fabrication tools applied to the creation of molds or formwork for cast or formed materials. Many of these processes are highly customizable but resource intensive, singular in geometry, and disposable. This paper introduces pillow forming as a customizable, reusable forming system aimed at minimizing the resource intensity of construction and capable of producing both standardized and unique curved molded panels. The apparatus consists of a field of pneumatic pillows that inflate to form a complex curved surface with which various materials can be formed or cast. The design and construction of the system is discussed, including the modular inflation system, pneumatic and electronic control systems, control software run through Rhinoceros, Grasshopper, and Arduino, as well as the standard operation procedure. The system is demonstrated through the production of Homegrown, an architectural installation built of pillow formed biomaterial aggregate. Various limitations and opportunities of the system are discussed and analyzed, and opportunities for future development and applications in sustainable construction are posited.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2021_197
id ecaade2021_197
authors Szentesi-Nejur, Szende, De Luca, Francesco and Nejur, Andrei
year 2021
title Integrated Architectural and Environmental Performance-Driven Form-Finding - A teaching case study in Montreal
doi https://doi.org/10.52842/conf.ecaade.2021.2.105
source Stojakovic, V and Tepavcevic, B (eds.), Towards a new, configurable architecture - Proceedings of the 39th eCAADe Conference - Volume 2, University of Novi Sad, Novi Sad, Serbia, 8-10 September 2021, pp. 105-114
summary The proposed paper presents the methodology and the outcomes of an intensive conception studio taught by the authors at the School of architecture of the University of Montreal having as objective the introduction of 3rd year architecture students to environmental evaluation and optimization techniques linked by the parametric design and the generative creation of architectural object. As opposed to mostly analysis-based approaches, an integration with architectural and urban design concepts was considered to be a more efficient method to initiate architecture students in environmental performance-driven design. The novelty of the course lays in the development of an integrative teaching method having as educational goals the development of environmental analysis skills, the creative use of digital tools, the conception of a coherent optimization process and the ability to represent a performance-driven design process.
keywords integrative teaching method, environmental design, performance-based design, parametric design, solar architecture, optimization
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2021_358
id sigradi2021_358
authors Tosello, Maria Elena, Mines, Patricia, Jereb, Marcelo, Rainaudo, Verónica, Longoni, Agustín, Carboni, Lucía, Saucedo, Santiago and Picco, Camila
year 2021
title Designing (at) the Edges: Urban Interfaces and Hybrid Habitats
source Gomez, P and Braida, F (eds.), Designing Possibilities - Proceedings of the XXV International Conference of the Ibero-American Society of Digital Graphics (SIGraDi 2021), Online, 8 - 12 November 2021, pp. 1359–1370
summary This interdisciplinary work, which integrates teaching, research and extension, incorporated students from 5 Latin American universities of Architecture and different Design Degrees. The experience that was developed in the first semester of 2021, during the Covid-19 pandemic, deals with the contribution that design and digital media can make to the social problems of local communities. Through the collaborative design of artifacts, interfaces, spaces and representations that articulate the natural, the artificial and the digital, the objective was to value and make visible the natural and cultural heritage of "La Boca", a coastal neighborhood of the city of Santa Fe, located in the flood valley of the Paraná River. Innovative ideas were provided to drive sustainable development processes through proposals that rescue the knowledge and resources of the place using digital mediations. The article analyzes the conceptual bases, methodology and results of this difficult but original experience.
keywords collaborative design, digital media, community tourism, technopolitics
series SIGraDi
email
last changed 2022/05/23 12:11

_id caadria2021_004
id caadria2021_004
authors Wei, Hu and Ke, Xiang
year 2021
title Study of Measurement and Envi-met Simulation of Winter Night in NanPing Village under Wet and Cold Microclimate based on urban roughness
doi https://doi.org/10.52842/conf.caadria.2021.2.427
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 427-436
summary This study selects four urban roughness parameters of building density, FAR, building dispersion ratio, and green rate to study the wet and cold microclimate in the winter night. According to the combination of 7 points measurement and 36 grids ENVI-met simulation, this study obtains microclimate research data. The significants of the winter night wet and cold microclimate is focused on improving the somatosensory temperature, and this study splits the target into two related directions, one is to extend the duration of comfortable temperature and humidity, another is to expand the comfortable area of temperature and humidity. By coupling analysis of urban roughness and the comfortable ratio, this study found out 11 relationship lines between urban roughness and nighttime microclimate in NanPing village. These laws offer the design strategy for NanPing Villages future development from three directions. These also provide a solution to achieve a low carbon, sustainable built environment.
keywords Urban Roughness; Microclimate; Climate measurement; ENVI-met; Sustainable development
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2021_173
id caadria2021_173
authors Xu, Wenzhao, Huang, Xiaoran and Kimm, Geoff
year 2021
title Tear Down the Fences: Developing ABM Informed Design Strategies for Ungating Closed Residential Communities - Developing ABM informed design strategies for ungating closed residential communities
doi https://doi.org/10.52842/conf.caadria.2021.2.467
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 467-477
summary Embedded in Chinas urbanization process, the growth of gated residential estates has gradually induced severance of urban spaces, resulting in an underutilization of public amenities, a lack of walkable permeability, and congestion of traffic. Responding to these negative effects on urban development, the CPC has released a guideline in February 2016 to prohibit the development of any new closed residential areas in principle and to advocate ungated communities. In this paper, we utilized ABM simulation analysis to test different degrees of openness, the position of new entrances/openness, and pedestrian network typologies, aiming to explore feasible strategies to accommodate the new urban design agenda. A series of typical gated compounds in Beijing were selected for comparative case studies, conducted under different degrees of openness of each case and under diverse ungating modes between cases. On the basis of these analyses, we summarized a sequence of pedestrian-centric design strategies, seeking to increase the communities permeability and walkability by suggesting alternative internal and external road network design options for Beijing urban renewal. By integrating quantified simulation into the empirical method of urban design, our research can positively assist and inform urban practitioners to propose a more sustainable urbanity in the future.
keywords Gated community; agent-based modeling; pedestrian simulation; computer-aided urban design; road network optimization
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 249HOMELOGIN (you are user _anon_272814 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002