CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id acadia22_128
id acadia22_128
authors Azel, Nicolas; Pachuca, Brandon; Wilson, Lucien
year 2022
title Closing the Gap
source ACADIA 2022: Hybrids and Haecceities [Proceedings of the 42nd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. University of Pennsylvania Stuart Weitzman School of Design. 27-29 October 2022. edited by M. Akbarzadeh, D. Aviv, H. Jamelle, and R. Stuart-Smith. 128-137.
summary This paper shares KPF Cloud Tools, a platform for using Rhino Compute (McNeel’s REST API for RhinoCommon and Grasshopper) to run a library of Grasshopper tools through a cloud server via a Rhino plugin with a procedurally generated user interface, making it quick to deploy new tools (Robert McNeel & Associates 2010). We describe the professional challenges that the KPF Cloud Tools platform solves, document the technical implementation of the platform, and illustrate its benefit through the impact on a large architectural practice.
series ACADIA
type paper
email
last changed 2024/02/06 14:00

_id ijac201513204
id ijac201513204
authors Cupkova, Dana and Nicolas Azel
year 2015
title Mass Regimes: Geometric Actuation of Thermal Behavior
source International Journal of Architectural Computing vol. 13 - no. 2, 169-194
summary The Mass Regimes is a research project that investigates the effect of complex geometry on processes of passive heat distribution in thermal mass systems. In the context of systems thinking, this research intends to instrumentalize design principles that engage a wider range of design tactics for choreographing thermal gradients between buildings and their environment. Research for this project has brought about a deeper understanding of how specific geometric manipulations of surface area over the same mass (Figure 1) affect the rate of thermal transfer. Leveraging physical simulations of geometric populations, along with current computational and design tools, the project sheds light on performative trends that may enhance creative design explorations in the use of passive systems. Preliminary analysis of varied geometric populations suggest an exciting trend and the possibility for a more synthetic incorporation of morphology, one in which surface geometry can be passively utilized to generate effects with more fidelity over the pace of thermal absorption and the release of sensible heat.
series journal
last changed 2019/05/24 09:55

_id acadia14_237
id acadia14_237
authors Cupkova, Dana; Azel, Nicolas
year 2014
title MASS REGIMES: Geometrically Actuated Thermal Flows
doi https://doi.org/10.52842/conf.acadia.2014.237
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 237-246
summary Mass Regimes project investigates the effect of complex geometry on the process of passive heat distribution in thermal mass systems, with the intention of instrumentalizing design principles that effectively engage a greater thermal gradient between buildings and their environment. The focus is on a deeper understanding of how specific morphological manipulation of mass distribution to surface area affects the rate of thermal transfer.
keywords Performance in Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id ijac202018201
id ijac202018201
authors Mondor, Christine Ann and Nicolas Azel
year 2020
title Acting on the invisible: Computational tools and community action in the landscapes of air quality
source International Journal of Architectural Computing vol. 18 - no. 2, 108-119
summary This article proposes that designers and planners can better manage wicked problems by developing a strategic alignment of computational technology with a theory of change. Together with an understanding of the most effective places to intervene in a system, designers’ informed use of technology enables them to orchestrate community action and leverage large-scale environmental change. Aligning technology with a theory of change deepens the relevance of computational tools and suggests that technologies or tools that augment one’s ability to perceive, understand relevance, or prioritize raise the potential for action; technologies or tools that aggregate information on collective beliefs or actions help to build a community of concern; and technologies that elevate community capacity and create a sense of identity can contribute to the long-term transformation of values. Through a case study, this article demonstrates a nested approach to computation, which enhances public awareness and enables action in a small community which is trying to manage an extra-territorial problem of air quality. This article also proposes that while computational tools have extended the reach and effectiveness of advocacy, designers should continue to push for expanded application. By aggregating lessons learned from technological networks, such as the emerging clean air network described in this article, we can add another socio-ecological dimension to the practices of landscape and urbanism.
keywords Reactive landscapes, adaptive landscapes, computation, citizen science, embedded environments, computational technology, theory of change, community capacity, community identity, technology ecosystems
series journal
email
last changed 2020/11/02 13:34

No more hits.

HOMELOGIN (you are user _anon_879427 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002