CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 2 of 2

_id ijac201715402
id ijac201715402
authors Alaçam, Sema; Orkan Zeynel Güzelci, Ethem Gürer and Saadet Zeynep Bac?noglu
year 2017
title Reconnoitring computational potentials of the vault-like forms: Thinking aloud on muqarnas tectonics
source International Journal of Architectural Computing vol. 15 - no. 4, 285-303
summary This study sheds light on a holistic understanding of muqarnas with its historical, philosophical and conceptual backgrounds on one hand and formal, structural and algorithmic principles on the other hand. The vault-like Islamic architectural element, muqarnas, is generally considered to be a non-structural decorative element. Various compositional approaches have been proposed to reveal the inner logic of these complex geometric elements. Each of these approaches uses different techniques such as measuring, unit-based decoding or three-dimensional interpretation of two-dimensional patterns. However, the reflections of the inner logic onto different contexts, such as the usage of different initial geometries, materials or performative concerns, were neglected. In this study, we offer a new schema to approach the performative aspects of muqarnas tectonics. This schema contains new sets of elements, properties and relations deriving partly from previous approaches and partly from the technique of folding. Thus, this study first reviews the previous approaches to analyse the geometric and constructional principles of muqarnas. Second, it explains the proposed scheme through a series of algorithmic form-finding experiments. In these experiments, we question whether ‘fold’, as one of the performative techniques of making three-dimensional forms, contributes to the analysis of muqarnas in both a conceptual and computational sense. We argue that encoding vault-like systems via geometric and algorithmic relations based on the logic of the ‘fold’ provides informative and intuitive feedback for form-finding, specifically in the earlier phases of design. While focusing on the performative potential of a specific fold operation, we introduced the concept of bifurcation to describe the generative characteristics of folding technique and the way of subdividing the form with respect to redistribution of the forces. Thus, in this decoding process, the bifurcated fold explains not only to demystify the formal logic of muqarnas but also to generate new forms without losing contextual conditions.
keywords Muqarnas, vault, layering, folding, force flow, bifurcation
series journal
email
last changed 2019/08/07 14:03

_id sigradi2016_382
id sigradi2016_382
authors Güzelci, Orkan Zeynel; Alaçam, Sema; Bac?no?lu, Zeynep
year 2016
title Enhancing Flexibility of 2D Planar Materials By Applying Cut Patterns For Hands On Study Models
source SIGraDi 2016 [Proceedings of the 20th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Argentina, Buenos Aires 9 - 11 November 2016, pp. 1-6
summary Active experimentation during intertranslations between digital and physical modelling allow designers to explore new geometrical possibilities. Particularly, while changing the strength of the material, cut operations augment bending performance of the planar surfaces. Keeping in mind the potentiality of bending behavior as a generative tool for computational process, this paper presents the findings of three phased experimentation: implication of cut patterns to 2D planar material, mapping 2D patterns onto 3D surfaces and exploring new 3D free-form surfaces.
keywords Bending; Hands-on Exploration; Making; Laser Cut; Double Curvature
series SIGRADI
email
last changed 2021/03/28 19:58

No more hits.

HOMELOGIN (you are user _anon_619987 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002