CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 1 of 1

_id ecaade2022_275
id ecaade2022_275
authors Gan, Amelia Wen Jiun, Guida, George, Kim, Dongyun, Shah, Devashree, Youn, Hyejun and Seibold, Zach
year 2022
title Modulo Continuo - 5-axis ceramic additive manufacturing applications for evaporative cooling facades modules
doi https://doi.org/10.52842/conf.ecaade.2022.1.047
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 47–55
summary Recent developments in industrial robotics present an increasing degree of control in additive manufacturing, enabling customization of architectural building components at the scale of the individual unit. Combining the affordances of a 6-axis robotic arm, paste- based extrusion, and terracotta clay, Modulo Continuo presents methods for part-customization of evaporative cooling facade modules. The design of the facade modules is developed firstly at the scale of the tectonic unit - as a self-supporting, interlocking modular system of curved modules with an embedded water reservoir for evaporative cooling. Second, this is developed at the scale of the toolpath - in which the density of the infill geometry in the modules is calibrated based on principles of evaporative cooling. This research presents aesthetic and performative opportunities through an exploration of infill patterning and density of modules based on evaporative cooling requirements. To produce each curved module through additive manufacturing, curved CNC milled substrates are used to support the geometry while accommodating clay shrinkage. Furthermore, this paper presents novel digital workflows for the customization of a modular façade system and the generation of variable toolpaths for infill patterns. By developing additive manufacturing methodologies for part- customization, the research presents future opportunities for the digital fabrication of ceramic construction elements.
keywords Additive Manufacturing, Digital Fabrication, Evaporative Cooling, Ceramics
series eCAADe
email
last changed 2024/04/22 07:10

No more hits.

HOMELOGIN (you are user _anon_491541 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002