summary |
Interpreting two-dimensional drawings presents problems for builders since they are required to transfer these into three-dimensional mental images. Virtual Reality (VR) technology has several advantages. One is that it can be used to solve the problem of image transfer since VR supports a What-You-See-Is-What-You-Get object together with a binocular effect, improving users' visual sense. Another advantage of VR is the capability to present a real time dynamic simulation, which can be used to represent construction processes. By representing virtually real construction components and processes, users can walk through the virtual project. Using his/her safety knowledge, he/she can identify safety hazards inherent within the virtually real construction components and processes and determine the appropriate safety precautions to employ to make the virtual construction site safe. This hazard identification process can be better achieved if a guideline is provided. Therefore, a Design-For-Safety-Process (DFSP) guideline is developed to assist users to identify safety hazards as well as to recommend remedial safety measures. This paper discusses how virtual reality benefits the construction industry in terms of a design representation. In addition, important issues in developing virtually real construction components and processes as well as functions of virtual reality which are needed to support the DFSP are discussed.
|