id |
acadia16_414 |
authors |
Tabbarah, Faysal |
year |
2016 |
title |
Almost Natural Shelter: Non-Linear Material Misbehavior |
source |
ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 414-423 |
doi |
https://doi.org/10.52842/conf.acadia.2016.414
|
summary |
This paper critiques computational design and digital fabrication’s obsession with both precision and images of natural patterns by describing a messy attitude towards digital and material computation that integrates and blurs between linear and non-linear fabrication, resulting in material formations and spatial affects that are beyond pattern and image and are almost natural. The motivation behind the body of work presented in the paper is to question the production of space and aesthetics in a post-human frontier as we embark on a new geological era that is emerging out of the unprecedented influence of the human race on the planet’s ecological systems. The paper and the body of work posit that the blurring between the natural and the synthetic in the post-human frontier can materialize a conception of space that exhibits qualities that are both natural and synthetic. The paper is organized in three parts. It begins by describing the theoretical framework that drives the body of work. Next, it describes early digital and material casting explorations that began to blur between linear and non-linear fabrication to produce almost natural objects. Finally, it describes the process of designing and making Almost Natural Shelter, a spatial installation that emerges from the integration of messy computational design methodologies and chemically volatile non-linear fabrication. In specific, High Density Foam is persuaded to chemically self-compute in an attempt at uncovering a shelter that has almost natural spatial qualities, such as non-linear textural differentiation and sudden migration between different texture types. |
keywords |
natural, texture, nonlinear fabrication, sensate systems |
series |
ACADIA |
type |
paper |
email |
|
full text |
file.pdf (1,281,976 bytes) |
references |
Content-type: text/html
Access Temporarily Restricted
Access Temporarily Restricted
Too many requests detected. Please wait 60 seconds or verify that you are a human.
If you are a human user and need immediate access, you can click the button below to continue:
If you continue to experience issues, please open a ticket at
papers.cumincad.org/helpdesk
|
last changed |
2022/06/07 07:56 |
|