CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id acadia20_154p
authors Josephson, Alex; Friedman, Jonathan; Salance, Benjamin; Vasyliv, Ivan; Melnichuk, Tim
year 2020
title Gusto: Rationalizing Computational Masonry Design
source ACADIA 2020: Distributed Proximities / Volume II: Projects [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95253-6]. Online and Global. 24-30 October 2020. edited by M. Yablonina, A. Marcus, S. Doyle, M. del Campo, V. Ago, B. Slocum. 154-159
summary Gusto 501 is a multi-level Infill Building on the footprint of an old car garage. Surrounded by an overpass and former factories, the restaurant and event spaces take the form of a ‘Hyper garage’ as a nod to its urban context. The interior is punctuated with standard terracotta blocks formed to create an intricate play of shadows during the day and embedded with LEDs to provide atmospheric illumination at night. The client's vision, our narrative, and the program demanded an innovative use of the primal material: terracotta. The scale of the project required the use of 3,700 blocks. Within the array wrapped around a 50ft tall interior volume, each block needed to be formed and sequenced uniquely to maintain structural integrity and interface with building systems, and express the sculptural qualities our team had designed. Standard approaches to the masonry could not achieve the effects our team was striving for - we had to develop our ground-up process to manufacture and install mass-customized masonry. The design process involved an algorithmic approach to a series of cuts and geometric manipulations to the blocks that allowed for near-endless combinations/configurations to create a dynamic interior facade system. Partisans, partnering with a terracotta block manufacturer, a local mason, and a masonry engineer, pursued simplifying production using wire cutter systems. Digital and physical mock-ups were then used to create a robust library of parameterized design criteria that optimized corbelling, grout thickness, weight, and fabrication complexity. Working sets of drawings were automated through a fully integrated BIM model, simplifying and speeding up installation. The challenge of marrying these processes with the physical realities of installation required another level of collaboration that included the masons themselves and the electricians who would eventually combine lighting systems into the sculpted block array.
series ACADIA
type project
email
full text file.pdf (7,631,341 bytes)
references Content-type: text/plain
last changed 2021/10/26 08:03
pick and add to favorite papersHOMELOGIN (you are user _anon_897438 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002