CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id ascaad2022_063
authors Ozman, Gizem; Selcuk, Semra
year 2022
title Generating Mass Housing Plans through GANs: A case in TOKI, Turkey
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 17-29
summary Nowadays, Machine Learning (ML) is frequently used in almost all disciplines having an intersection with technology. Recently, architects are using existing plan data sets in architecture through Deep Learning (DL) algorithms of big data to achieve generative and non-existent plan models by using ML. Especially, Generative Adversarial Neural Networks (GANs), one of the deep learning algorithms, have been in use in the creation of generative models for architectural studies. Within the scope of this paper, architectural drawings were generated by using GANs. This generation method allows for the training of spatial layout planning to networks and for the generation of plans that do not exist in the dataset. Architectural drawings of TOKI (Housing Development Administration of the Republic of Türkiye) mass housing projects were used as datasets. In line with studies already carried out, this study attempts to create a method for further processing of the research. In this study, the differences between the plan typologies generated with raster images and the reality relations in visual productions between graph-based plan layout productions were evaluated. In this context, 157 plan datasets were obtained by multiplying plans which were spatially correlated with the RGB settings of 21 plan typologies. As a result of this research, it has been determined that the spatial layout planning of the HouseGAN algorithm provides TOK?'s current plan typologies of generation together with bubble diagrams. HouseGAN was trained using its dataset and the outputs obtained were realistic background images.
series ASCAAD
email ozerol.gizem@gmail.com
full text file.pdf (862,945 bytes)
references Content-type: text/plain
last changed 2024/02/16 13:29
pick and add to favorite papersHOMELOGIN (you are user _anon_210021 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002