CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id caadria2016_703
authors Ding, Yakui; Tomohiro Fukuda, Nobuyoshi Yabuki, Takashi Michikawa and Ali Motamedi
year 2016
title Automatic Measurement System of Visible Greenery Ratio Using Augmented Reality
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 703-712
doi https://doi.org/10.52842/conf.caadria.2016.703
summary Greening has been promoted to improve the living condi- tions in urban environments. Quantification of greenery is an im- portant issue to identify the criteria for stakeholders in the process of greening. This research focuses on the quantification of visible green- ery ratio which is defined as the amount of greenery in the field of vi- sion. Some measurement methods of visible greenery ratio have been already proposed. However, the quantification process is usually time consuming and prone to human errors due to manual operations by us- ing an image processing software. Therefore, in this research, the au- thors developed an automated measurement system based on image processing technology for the efficient visible greenery ratio meas- urement. In the verification experiment, the proposed method achieved similar results for extracted pixels of green areas as the tradi- tional manual method, with decreased calculation time. Furthermore, in addition to measuring the current ratio of greenery, this system can visualize possible future changes in visible greenery by adding plant- ing (landscape) design models in an Augmented Reality (AR) envi- ronment. Using the proposed method, an ideal greening environment can be designed and evaluated by end-users, more intuitively. The de- veloped design system is expected to eventually result in increasing the amount of greenery in the urban environment.
keywords Visible greenery ratio; image processing; automatic measurement tool; augmented reality
series CAADRIA
email
full text file.pdf (3,829,976 bytes)
references Content-type: text/html Access Temporarily Restricted

Access Temporarily Restricted

Too many requests detected. Please wait 60 seconds or verify that you are a human.

If you are a human user and need immediate access, you can click the button below to continue:

If you continue to experience issues, please open a ticket at papers.cumincad.org/helpdesk

last changed 2022/06/07 07:55
pick and add to favorite papersHOMELOGIN (you are user _anon_417264 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002