id |
caadria2019_657 |
authors |
Chen, Zhewen, Zhang, Liming and Yuan, Philip F. |
year |
2019 |
title |
Innovative Design Approach to Optimized Performance on Large-Scale Robotic 3D-Printed Spatial Structure |
source |
M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 2, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 451-460 |
doi |
https://doi.org/10.52842/conf.caadria.2019.2.451
|
summary |
This paper presents an innovative approach on designing large-scale spatial structure with automated robotic 3D-printing. The incipient design approach mainly focused on optimizing structural efficiency at an early design stage by transform the object into a discrete system, and the elements in this system contains unique structural parameters that corresponding to its topology results of stiffness distribution. Back in 2017, the design team already implemented this concept into an experimental project of Cloud Pavilion in Shanghai, China, and the 3D-printed spatial structure was partitioned into five zones represent different level of structure stiffness and filled with five kinds of unit toolpath accordingly. Through further research, an upgrade version, the project of Cloud Pavilion 2.0 is underway and will be completed in January 2019. A detailed description on innovative printing toolpath design in this project is conducted in this paper and explains how the toolpath shape effects its overall structural stiffness. This paper contributes knowledge on integrated design in the field of robotic 3D-printing and provides an alternative approach on robotic toolpath design combines with the optimized topological results. |
keywords |
3D-Printing; Robotic Fabrication; Structural Optimization; Discrete System; Toolpath Design |
series |
CAADRIA |
email |
|
full text |
file.pdf (3,902,076 bytes) |
references |
Content-type: text/html
Access Temporarily Restricted
Access Temporarily Restricted
Too many requests detected. Please wait 60 seconds or verify that you are a human.
If you are a human user and need immediate access, you can click the button below to continue:
If you continue to experience issues, please open a ticket at
papers.cumincad.org/helpdesk
|
last changed |
2022/06/07 07:54 |
|