CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id caadria2021_052
authors Yousif, Shermeen and Bolojan, Daniel
year 2021
title Deep-Performance - Incorporating Deep Learning for Automating Building Performance Simulation in Generative Systems
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 1, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 151-160
doi https://doi.org/10.52842/conf.caadria.2021.1.151
summary In this study, we introduce a newly developed method called Deep-Performance, to enable automatic environmental performance simulation prediction without the need to perform simulations, by integrating deep learning strategies. The aim is to train neural networks on datasets with thousands of building design samples and their corresponding performance simulation. The trained model would offer performance prediction for design options emerging in generative protocols. The research is a work-in-progress within a broader project aimed at automating buildings environmental performance evaluations of daylight analysis and energy simulation, using deep learning (DL) models. This paper focuses on the implementation of a supervised DL method for automating the retrieval of daylight analysis metrics, targeting successful daylight design and higher building enclosure efficiency. We have further improved a Pix2Pix model trained on 5 different datasets, each containing 6000 paired images of architectural floor plans and their daylight simulation metrics. In the inference phase, the model was able to accurately predict the daylight simulation for unseen sets of floor plans. For validation, two quantitative assessment metrics were followed to assess the predicted daylight performance against the daylight performance simulation. Both assessment metrics showed high accuracy levels.
keywords Deep Learning; Artificial Intelligence; Deep-Performance; Automating Building Performance Simulation; Generative Systems
series CAADRIA
email
full text file.pdf (8,832,595 bytes)
references Content-type: text/html Access Temporarily Restricted

Access Temporarily Restricted

Too many requests detected. Please wait 60 seconds or verify that you are a human.

If you are a human user and need immediate access, you can click the button below to continue:

If you continue to experience issues, please open a ticket at papers.cumincad.org/helpdesk

last changed 2022/06/07 07:57
pick and add to favorite papersHOMELOGIN (you are user _anon_426589 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002