CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References
id caadria2022_277
authors Akbar, Zuardin, Wood, Dylan, Kiesewetter, Laura, Menges, Achim and Wortmann, Thomas
year 2022
title A Data-Driven Workflow for Modelling Self-Shaping Wood Bilayer, Utilizing Natural Material Variations with Machine Vision and Machine Learning
doi https://doi.org/10.52842/conf.caadria.2022.1.393
source Jeroen van Ameijde, Nicole Gardner, Kyung Hoon Hyun, Dan Luo, Urvi Sheth (eds.), POST-CARBON - Proceedings of the 27th CAADRIA Conference, Sydney, 9-15 April 2022, pp. 393-402
summary This paper develops a workflow to train machine learning (ML) models with a small dataset from physical samples to predict the curvatures of self-shaping wood bilayers based on local variations in the grain. In contrast to state-of-the-art predictive models, specifically 1.) a 2D Timoshenko model and 2.) a 3D numerical model with a rheological model, our method accounts for natural and unavoidable material variations. In this paper, we only focus on local grain variations as the main driver for curvatures in small-scale material samples. We extracted a feature matrix from grain images of active and passive layers as a Grey Level Co-Occurrence Matrix and used it as the input for our ML models. We also analysed the impact of grain variations on the feature matrix. We trained and tested several tree-based regression models with different features. The models achieved very accurate predictions for curvatures in each sample (R;0.9) and extend the range of parameters that is incalculable by a Timoshenko model. This research contributes to the material-efficient design of weather-responsive shape-changing wood structures by further leveraging the use of natural material features and explainable data-driven modelling and extends the topic in ML for material behaviour-driven design among the CAADRIA community.
keywords data-driven model, machine learning, material programming, smart material, timber structure, SDG 12
series CAADRIA
email zuardin.akbar@icd.uni-stuttgart.de
full text file.pdf (814,223 bytes)
references Content-type: text/plain
Details Citation Select
100%; open Fragkia, V., Foged, I. W. & Pasold, A. (2021) Find in CUMINCAD Predictive Information Modeling: Machine Learning Strategies for Material Uncertainty , Technology|Architecture + Design, 5(2), 163–176. https://doi.org/10.1080/24751448.2021.1967057Grönquist, P., Wittel, F. K., & Rüggeberg, M. (2018). Modeling and design of thin bending wooden bilayers. PLOS ONE, 13(10), e0205607. https://doi.org/10.1371/journal.pone.0205607Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A., & Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5(9), eaax1311. https://doi.org/10.1126/sciadv.aax1311Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314

100%; open Haryanto, T., Pratama, A., Suhartanto, H., Murni, A., Kusmardi, K. & Pidanic, J. (2020) Find in CUMINCAD Multipatch-GLCM for Texture Feature Extraction on Classification of the Colon Histopathology Images using Deep Neural Network with GPU Acceleration , Journal of Computer Science, 16(3), 280–294. https://doi.org/10.3844/jcssp.2020.280.294Hassani, M. M., Wittel, F. K., Hering, S., & Herrmann, H. J. (2015). Rheological model for wood. Computer Methods in Applied Mechanics and Engineering, 283, 1032–1060. https://doi.org/10.1016/j.cma.2014.10.031

100%; open He, X., Grassi, G. & Paoletti, I. (2021) Find in CUMINCAD Geometric Deep Learning: Prediction of Shape-Shifting Textiles , 12th Annual Symposium on Simulation for Architecture and Urban Design (SimAUD): Human+, SimAUD 2021. The Symposium on Simulation for Architecture and Urban Design (SimAUD)

100%; open Hering, S., Keunecke, D. & Niemz, P. (2012) Find in CUMINCAD Moisture-dependent orthotropic elasticity of beech wood , Wood Science and Technology, 46(5), 927–938. https://doi.org/10.1007/s00226-011-0449-4Lundberg, S., & Lee, S.-I. (2017, November 24). A Unified Approach to Interpreting Model Predictions. In The 31st Conference on Neural Information Processing Systems 2017. The Conference on Neural Information Processing Systems (NeurIPS)

100%; open Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N. & Lee, S.-I. (2019) Find in CUMINCAD Explainable AI for Trees: From Local Explanations to Global Understanding , ArXiv:1905.04610 [Cs, Stat]. Retrieved January 10, 2022, from http://arxiv.org/abs/1905.04610Menges, A., & Reichert, S. (2012). Material Capacity: Embedded Responsiveness. Architectural Design, 82(2), 52–59. https://doi.org/10.1002/ad.1379Olsson, A., & Oscarsson, J. (2017). Strength grading on the basis of high resolution laser scanning and dynamic excitation: A full scale investigation of performance. European Journal of Wood and Wood Products, 75(1), 17–31. https://doi.org/10.1007/s00107-016-1102-6Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830

100%; open Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., Wu, G., Yu, L., Fleming, P., Densley-Tingley, D., Allwood, J., Dupree, P., Linden, P. F. & Scherman, O. (2017) Find in CUMINCAD The wood from the trees: The use of timber in construction , Renewable and Sustainable Energy Reviews, 68, 333–359. https://doi.org/10.1016/j.rser.2016.09.107Rossi, G., & Nicholas, P. (2018). Re/Learning the Wheel. Methods to Utilize Neural Networks as Design Tools for Doubly Curved Metal Surfaces. In ACADIA 2018: Recalibration. On Imprecision and Infidelity, (pp. 146–155). The Association for Computer Aided Design in Architecture (ACADIA)

100%; open Rowell, R. M. (2021) Find in CUMINCAD Handbook of Wood Chemistry and Wood Composites (2nd ed.). , CRC Press

100%; open Vasques, A. N. (2021) Find in CUMINCAD Utilizing U-Net shaped networks as simulation tools in form-finding processes for fabric , 12th Annual Symposium on Simulation for Architecture and Urban Design (SimAUD): Human+, SimAUD 2021. The Symposium on Simulation for Architecture and Urban Design (SimAUD)

100%; open Wimmer, G., Schraml, R., Hofbauer, H., Petutschnigg, A. & Uhl, A. (2021) Find in CUMINCAD Two-Stage CNN-Based Wood Log Recognition , O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Bleèiæ, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, & C. M. Torre (Eds.), Computational Science and Its Applications – ICCSA 2021 (Vol. 12955, pp. 115–125). Springer International Publishing

100%; open Wood, D. M., Correa, D., Krieg, O. D. & Menges, A. (2016) Find in CUMINCAD Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces , International Journal of Architectural Computing, 14(1), 49–62. https://doi.org/10.1177/1478077115625522Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M., Burgert, I., Knippers, J., Menges, A. (2020). From Machine Control to Material Programming: Self-Shaping Wood Manufacturing of A High Performance Curved Clt Structure – Urbach Tower. In Burry, J., Sabin, J., Sheil, B., & Skavara, M. (Eds.), Fabricate 2020 (pp. 50–57). UCL Press

100%; open Wood, D., Brütting, J. & Menges, A. (2018) Find in CUMINCAD Self-Forming Curved Timber Plates: Initial Design Modeling for Shape-Changing Material Buildups , The Annual Symposium of the International Association for Shell and Spatial Structures, IASS 2018. The International Association for Shell and Spatial Structures (IASS)

100%; open Wood, D., Vailati, C., Menges, A. & Rüggeberg, M. (2018) Find in CUMINCAD Hygroscopically actuated wood elements for weather responsive and self-forming building parts – Facilitating upscaling and complex shape changes , Construction and Building Materials, 165, 782–791. https://doi.org/10.1016/j.conbuildmat.2017.12.134Zwierzycki, M., Nicholas, P., & Ramsgaard Thomsen, M. (2018). Localised and Learnt Applications of Machine Learning for Robotic Incremental Sheet Forming. In K. De Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen, P. Rahm, & M. R. Thomsen (Eds.), Humanizing Digital Reality (pp. 373–382). Springer Singapore. https://doi.org/10.1007/978-981-10-6611-5_32

last changed 2022/07/22 07:34
pick and add to favorite papersHOMELOGIN (you are user _anon_235531 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002